Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

Prognostic factors of a favorable outcome following a supervised exercise program for soldiers with sub-acute and chronic low back pain

Authors: Marc Perron, Chantal Gendron, Pierre Langevin, Jean Leblond, Marianne Roos, Jean-Sébastien Roy

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

Low back pain (LBP) encompasses heterogeneous patients unlikely to respond to a unique treatment. Identifying sub-groups of LBP may help to improve treatment outcomes. This is a hypothesis-setting study designed to create a clinical prediction rule (CPR) that will predict favorable outcomes in soldiers with sub-acute and chronic LBP participating in a multi-station exercise program.

Methods

Military members with LBP participated in a supervised program comprising 7 stations each consisting of exercises of increasing difficulty. Demographic, impairment and disability data were collected at baseline. The modified Oswestry Disability Index (ODI) was administered at baseline and following the 6-week program. An improvement of 50% in the initial ODI score was considered the reference standard to determine a favorable outcome. Univariate associations with favorable outcome were tested using chi-square or paired t-tests. Variables that showed between-group (favorable/unfavorable) differences were entered into a logistic regression after determining the sampling adequacy. Finally, continuous variables were dichotomized and the sensitivity, specificity and positive and negative likelihood ratios were determined for the model and for each variable.

Results

A sample of 85 participants was included in analyses. Five variables contributed to prediction of a favorable outcome: no pain in lying down (p = 0.017), no use of antidepressants (p = 0.061), FABQ work score < 22.5 (p = 0.061), fewer than 5 physiotherapy sessions before entering the program (p = 0.144) and less than 6 months’ work restriction (p = 0.161). This model yielded a sensitivity of 0.78, specificity of 0.80, LR+ of 3.88, and LR- of 0.28. A 77.5% probability of favorable outcome can be predicted by the presence of more than three of the five variables, while an 80% probability of unfavorable outcome can be expected if only three or fewer variables are present.

Conclusion

The use of prognostic factors may guide clinicians in identifying soldiers with LBP most likely to have a favorable outcome. Further validation studies are needed to determine if the variables identified in our study are treatment effect modifiers that can predict success following participation in the multi-station exercise program.

Trial registration

ClinicalTrials.gov Identifier: NCT03464877 registered retrospectively on 14 March 2018.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bogduk N. Management of chronic low back pain. Med J Aust. 2004;180(2):79–83.PubMed Bogduk N. Management of chronic low back pain. Med J Aust. 2004;180(2):79–83.PubMed
2.
go back to reference Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH. Physical activity and exercise for chronic pain in adults: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2017;4:CD011279.PubMed Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH. Physical activity and exercise for chronic pain in adults: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2017;4:CD011279.PubMed
3.
go back to reference Rubinstein SM, van Middelkoop M, Assendelft WJ, de Boer MR, van Tulder MW. Spinal manipulative therapy for chronic low-back pain: an update of a Cochrane review. Spine (Phila Pa 1976). 2011;36(13):E825–46.CrossRef Rubinstein SM, van Middelkoop M, Assendelft WJ, de Boer MR, van Tulder MW. Spinal manipulative therapy for chronic low-back pain: an update of a Cochrane review. Spine (Phila Pa 1976). 2011;36(13):E825–46.CrossRef
4.
go back to reference Searle A, Spink M, Ho A, Chuter V. Exercise interventions for the treatment of chronic low back pain: a systematic review and meta-analysis of randomised controlled trials. Clin Rehabil. 2015;29(12):1155–67.CrossRefPubMed Searle A, Spink M, Ho A, Chuter V. Exercise interventions for the treatment of chronic low back pain: a systematic review and meta-analysis of randomised controlled trials. Clin Rehabil. 2015;29(12):1155–67.CrossRefPubMed
5.
go back to reference Deyo RA, Phillips WR. Low back pain. A primary care challenge. Spine (Phila Pa 1976). 1996;21(24):2826–32.CrossRef Deyo RA, Phillips WR. Low back pain. A primary care challenge. Spine (Phila Pa 1976). 1996;21(24):2826–32.CrossRef
6.
go back to reference Huijnen IP, Rusu AC, Scholich S, Meloto CB, Diatchenko L. Subgrouping of low back pain patients for targeting treatments: evidence from genetic, psychological, and activity-related behavioral approaches. Clin J Pain. 2015;31(2):123–32.CrossRefPubMed Huijnen IP, Rusu AC, Scholich S, Meloto CB, Diatchenko L. Subgrouping of low back pain patients for targeting treatments: evidence from genetic, psychological, and activity-related behavioral approaches. Clin J Pain. 2015;31(2):123–32.CrossRefPubMed
7.
go back to reference Pincus T, Burton AK, Vogel S, Field APA. Systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine (Phila Pa 1976). 2002;27(5):E109–20.CrossRef Pincus T, Burton AK, Vogel S, Field APA. Systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine (Phila Pa 1976). 2002;27(5):E109–20.CrossRef
8.
go back to reference Ramond A, Bouton C, Richard I, Roquelaure Y, Baufreton C, Legrand E, Huez JF. Psychosocial risk factors for chronic low back pain in primary care--a systematic review. Fam Pract. 2011;28(1):12–21.CrossRefPubMed Ramond A, Bouton C, Richard I, Roquelaure Y, Baufreton C, Legrand E, Huez JF. Psychosocial risk factors for chronic low back pain in primary care--a systematic review. Fam Pract. 2011;28(1):12–21.CrossRefPubMed
9.
go back to reference Vassilaki M, Hurwitz EL. Insights in public health: perspectives on pain in the low back and neck: global burden, epidemiology, and management. Hawaii J Med Public Health. 2014;73(4):122–6.PubMedPubMedCentral Vassilaki M, Hurwitz EL. Insights in public health: perspectives on pain in the low back and neck: global burden, epidemiology, and management. Hawaii J Med Public Health. 2014;73(4):122–6.PubMedPubMedCentral
10.
go back to reference Delitto A, Erhard RE, Bowling RW. A treatment-based classification approach to low back syndrome: identifying and staging patients for conservative treatment. Phys Ther. 1995;75(6):470–85. discussion 485-479CrossRefPubMed Delitto A, Erhard RE, Bowling RW. A treatment-based classification approach to low back syndrome: identifying and staging patients for conservative treatment. Phys Ther. 1995;75(6):470–85. discussion 485-479CrossRefPubMed
11.
go back to reference Fritz JM, Cleland JA, Childs JD. Subgrouping patients with low back pain: evolution of a classification approach to physical therapy. J Orthop Sports Phys Ther. 2007a;37(6):290–302.CrossRefPubMed Fritz JM, Cleland JA, Childs JD. Subgrouping patients with low back pain: evolution of a classification approach to physical therapy. J Orthop Sports Phys Ther. 2007a;37(6):290–302.CrossRefPubMed
12.
go back to reference Fritz JM, Lindsay W, Matheson JW, Brennan GP, Hunter SJ, Moffit SD, Swalberg A, Rodriquez B. Is There a subgroup of patients with low back pain likely to benefit from mechanical traction? Results of a randomized clinical trial and subgrouping analysis. Spine (Phila Pa 1976). 2007b;32(26):E793–800.CrossRef Fritz JM, Lindsay W, Matheson JW, Brennan GP, Hunter SJ, Moffit SD, Swalberg A, Rodriquez B. Is There a subgroup of patients with low back pain likely to benefit from mechanical traction? Results of a randomized clinical trial and subgrouping analysis. Spine (Phila Pa 1976). 2007b;32(26):E793–800.CrossRef
13.
go back to reference Rabin A, Shashua A, Pizem K, Dickstein R, Dar G. A clinical prediction rule to identify patients with low back pain who are likely to experience short-term success following lumbar stabilization exercises: a randomized controlled validation study. J Orthop Sports Phys Ther. 2014;44(1):6–B13.CrossRefPubMed Rabin A, Shashua A, Pizem K, Dickstein R, Dar G. A clinical prediction rule to identify patients with low back pain who are likely to experience short-term success following lumbar stabilization exercises: a randomized controlled validation study. J Orthop Sports Phys Ther. 2014;44(1):6–B13.CrossRefPubMed
14.
go back to reference Wang XQ, Zheng JJ, Yu ZW, Bi X, Lou SJ, Liu J, Cai B, Hua YH, Wu M, Wei ML, et al. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. PLoS One. 2012;7(12):e52082.CrossRefPubMedPubMedCentral Wang XQ, Zheng JJ, Yu ZW, Bi X, Lou SJ, Liu J, Cai B, Hua YH, Wu M, Wei ML, et al. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. PLoS One. 2012;7(12):e52082.CrossRefPubMedPubMedCentral
15.
go back to reference Hicks GE, Fritz JM, Delitto A, McGill SM. Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Arch Phys Med Rehabil. 2005;86(9):1753–62.CrossRefPubMed Hicks GE, Fritz JM, Delitto A, McGill SM. Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Arch Phys Med Rehabil. 2005;86(9):1753–62.CrossRefPubMed
16.
go back to reference Childs JD, Cleland JA. Development and application of clinical prediction rules to improve decision making in physical therapist practice. Phys Ther. 2006;86(1):122–31.CrossRefPubMed Childs JD, Cleland JA. Development and application of clinical prediction rules to improve decision making in physical therapist practice. Phys Ther. 2006;86(1):122–31.CrossRefPubMed
17.
go back to reference Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA. 1997;277(6):488–94.CrossRefPubMed Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA. 1997;277(6):488–94.CrossRefPubMed
18.
go back to reference Haskins R, Osmotherly PG, Rivett DA. Validation and impact analysis of prognostic clinical prediction rules for low back pain is needed: a systematic review. J Clin Epidemiol. 2015;68(7):821–32.CrossRefPubMed Haskins R, Osmotherly PG, Rivett DA. Validation and impact analysis of prognostic clinical prediction rules for low back pain is needed: a systematic review. J Clin Epidemiol. 2015;68(7):821–32.CrossRefPubMed
19.
go back to reference McGinn TG, Guyatt GH, Wyer PC, Naylor CD, Stiell IG, Users RWS. Guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-based medicine working group. JAMA. 2000;284(1):79–84.CrossRefPubMed McGinn TG, Guyatt GH, Wyer PC, Naylor CD, Stiell IG, Users RWS. Guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-based medicine working group. JAMA. 2000;284(1):79–84.CrossRefPubMed
22.
go back to reference Flynn T, Fritz J, Whitman J, Wainner R, Magel J, Rendeiro D, Butler B, Garber M, Allison SA. Clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. Spine (Phila Pa 1976). 2002;27(24):2835–43.CrossRef Flynn T, Fritz J, Whitman J, Wainner R, Magel J, Rendeiro D, Butler B, Garber M, Allison SA. Clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. Spine (Phila Pa 1976). 2002;27(24):2835–43.CrossRef
23.
go back to reference Stolze LR, Allison SC, Childs JD. Derivation of a preliminary clinical prediction rule for identifying a subgroup of patients with low back pain likely to benefit from Pilates-based exercise. J Orthop Sports Phys Ther. 2012;42(5):425–36.CrossRefPubMed Stolze LR, Allison SC, Childs JD. Derivation of a preliminary clinical prediction rule for identifying a subgroup of patients with low back pain likely to benefit from Pilates-based exercise. J Orthop Sports Phys Ther. 2012;42(5):425–36.CrossRefPubMed
24.
go back to reference Green SB. How many subjects does it take to do a regression analysis. Multivariate Behav Res. 1991;26(3):499–510.CrossRefPubMed Green SB. How many subjects does it take to do a regression analysis. Multivariate Behav Res. 1991;26(3):499–510.CrossRefPubMed
25.
go back to reference Goodman Cavallaro C, Snyder Kelly TE. Differential diagnosis for physical therapists: screening for referral. 5th ed. St-Louis: Elsevier-Saunders; 2013. Goodman Cavallaro C, Snyder Kelly TE. Differential diagnosis for physical therapists: screening for referral. 5th ed. St-Louis: Elsevier-Saunders; 2013.
26.
go back to reference Smeets R, Koke A, Lin CW, Ferreira M, Demoulin C. Measures of function in low back pain/disorders: low back pain rating scale (LBPRS), Oswestry disability index (ODI), progressive Isoinertial lifting evaluation (PILE), Quebec back pain disability scale (QBPDS), and Roland-Morris disability questionnaire (RDQ). Arthritis Care Res (Hoboken). 2011;63(Suppl 11):S158–73.CrossRef Smeets R, Koke A, Lin CW, Ferreira M, Demoulin C. Measures of function in low back pain/disorders: low back pain rating scale (LBPRS), Oswestry disability index (ODI), progressive Isoinertial lifting evaluation (PILE), Quebec back pain disability scale (QBPDS), and Roland-Morris disability questionnaire (RDQ). Arthritis Care Res (Hoboken). 2011;63(Suppl 11):S158–73.CrossRef
27.
go back to reference Fritz JM, Irrgang JJ. A comparison of a modified Oswestry low back pain disability questionnaire and the Quebec back pain disability scale. Phys Ther. 2001;81(2):776–88.CrossRefPubMed Fritz JM, Irrgang JJ. A comparison of a modified Oswestry low back pain disability questionnaire and the Quebec back pain disability scale. Phys Ther. 2001;81(2):776–88.CrossRefPubMed
28.
go back to reference Ostelo RW, Deyo RA, Stratford P, Waddell G, Croft P, Von Korff M, Bouter LM, de Vet HC. Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine (Phila Pa 1976). 2008;33(1):90–4.CrossRef Ostelo RW, Deyo RA, Stratford P, Waddell G, Croft P, Von Korff M, Bouter LM, de Vet HC. Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine (Phila Pa 1976). 2008;33(1):90–4.CrossRef
29.
go back to reference Davidson M, Keating JL. A comparison of five low back disability questionnaires: reliability and responsiveness. Phys Ther. 2002;82(1):8–24.CrossRefPubMed Davidson M, Keating JL. A comparison of five low back disability questionnaires: reliability and responsiveness. Phys Ther. 2002;82(1):8–24.CrossRefPubMed
30.
go back to reference Waddell G, Newton M, Henderson I, Somerville D, Main CJA. Fear-avoidance beliefs questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993;52(2):157–68.CrossRefPubMed Waddell G, Newton M, Henderson I, Somerville D, Main CJA. Fear-avoidance beliefs questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993;52(2):157–68.CrossRefPubMed
31.
32.
go back to reference Cleland JA, Childs JD, Whitman JM. Psychometric properties of the neck disability index and numeric pain rating scale in patients with mechanical neck pain. Arch Phys Med Rehabil. 2008;89(1):69–74.CrossRefPubMed Cleland JA, Childs JD, Whitman JM. Psychometric properties of the neck disability index and numeric pain rating scale in patients with mechanical neck pain. Arch Phys Med Rehabil. 2008;89(1):69–74.CrossRefPubMed
33.
go back to reference Lindell O, Eriksson L, Strender LE. The reliability of a 10-test package for patients with prolonged back and neck pain: could an examiner without formal medical education be used without loss of quality? A methodological study. BMC Musculoskelet Disord. 2007;8:31.CrossRefPubMedPubMedCentral Lindell O, Eriksson L, Strender LE. The reliability of a 10-test package for patients with prolonged back and neck pain: could an examiner without formal medical education be used without loss of quality? A methodological study. BMC Musculoskelet Disord. 2007;8:31.CrossRefPubMedPubMedCentral
34.
go back to reference Fritz JM, Brennan GP, Clifford SN, Hunter SJ, Thackeray A. An examination of the reliability of a classification algorithm for subgrouping patients with low back pain. Spine (Phila Pa 1976). 2006;31(1):77–82.CrossRef Fritz JM, Brennan GP, Clifford SN, Hunter SJ, Thackeray A. An examination of the reliability of a classification algorithm for subgrouping patients with low back pain. Spine (Phila Pa 1976). 2006;31(1):77–82.CrossRef
35.
go back to reference Cleland JA, Koppenhaver S. Netter's orthopaedic clinical examination: an evidence basec approach. 2nd ed. Philadelphia: Saunders-Elsevier; 2011. Cleland JA, Koppenhaver S. Netter's orthopaedic clinical examination: an evidence basec approach. 2nd ed. Philadelphia: Saunders-Elsevier; 2011.
36.
go back to reference Hicks GE, Fritz JM, Delitto A, Mishock J. Interrater reliability of clinical examination measures for identification of lumbar segmental instability. Arch Phys Med Rehabil. 2003;84(12):1858–64.CrossRefPubMed Hicks GE, Fritz JM, Delitto A, Mishock J. Interrater reliability of clinical examination measures for identification of lumbar segmental instability. Arch Phys Med Rehabil. 2003;84(12):1858–64.CrossRefPubMed
37.
go back to reference Neto T, Jacobsohn L, Carita AI, Oliveira R. Reliability of the Active-Knee-Extension and Straight-Leg-Raise Tests in Subjects With Flexibility Deficits. J Sport Rehabil. 2015;Technical Notes;17:2014–0220. Neto T, Jacobsohn L, Carita AI, Oliveira R. Reliability of the Active-Knee-Extension and Straight-Leg-Raise Tests in Subjects With Flexibility Deficits. J Sport Rehabil. 2015;Technical Notes;17:2014–0220.
38.
go back to reference Stochkendahl MJ, Christensen HW, Hartvigsen J, Vach W, Haas M, Hestbaek L, Adams A, Bronfort G. Manual examination of the spine: a systematic critical literature review of reproducibility. J Manipulative Physiol Ther. 2006;29(6):475–85. 485 e471–410CrossRefPubMed Stochkendahl MJ, Christensen HW, Hartvigsen J, Vach W, Haas M, Hestbaek L, Adams A, Bronfort G. Manual examination of the spine: a systematic critical literature review of reproducibility. J Manipulative Physiol Ther. 2006;29(6):475–85. 485 e471–410CrossRefPubMed
39.
go back to reference Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. 4th ed. Philadelphia: Wilkins LW; 2012. Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. 4th ed. Philadelphia: Wilkins LW; 2012.
40.
go back to reference Dziuban CD, Shirkey EC. When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychol Bull. 1974;81(6):358–61.CrossRef Dziuban CD, Shirkey EC. When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychol Bull. 1974;81(6):358–61.CrossRef
41.
go back to reference Poitras S, Rossignol M, Dionne C, Tousignant M, Truchon M, Arsenault B, Allard P, Cote M, Neveu A. An interdisciplinary clinical practice model for the management of low-back pain in primary care: the CLIP project. BMC Musculoskelet Disord. 2008;9:54.CrossRefPubMedPubMedCentral Poitras S, Rossignol M, Dionne C, Tousignant M, Truchon M, Arsenault B, Allard P, Cote M, Neveu A. An interdisciplinary clinical practice model for the management of low-back pain in primary care: the CLIP project. BMC Musculoskelet Disord. 2008;9:54.CrossRefPubMedPubMedCentral
42.
go back to reference Childs JD, Fritz JM, Flynn TW, Irrgang JJ, Johnson KK, Majkowski GR, Delitto A. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: a validation study. Ann Intern Med. 2004;141(12):920–8.CrossRefPubMed Childs JD, Fritz JM, Flynn TW, Irrgang JJ, Johnson KK, Majkowski GR, Delitto A. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: a validation study. Ann Intern Med. 2004;141(12):920–8.CrossRefPubMed
43.
go back to reference Henschke N, Maher CG, Refshauge KM, Herbert RD, Cumming RG, Bleasel J, York J, Das A, McAuley JH. Prognosis in patients with recent onset low back pain in Australian primary care: inception cohort study. BMJ. 2008;337:a171.CrossRefPubMed Henschke N, Maher CG, Refshauge KM, Herbert RD, Cumming RG, Bleasel J, York J, Das A, McAuley JH. Prognosis in patients with recent onset low back pain in Australian primary care: inception cohort study. BMJ. 2008;337:a171.CrossRefPubMed
44.
go back to reference Traeger AC, Henschke N, Hubscher M, Williams CM, Kamper SJ, Maher CG, Moseley GL, McAuley JH. Estimating the risk of chronic pain: development and validation of a prognostic model (PICKUP) for patients with acute low back pain. PLoS Med. 2016;13(5):e1002019.CrossRefPubMedPubMedCentral Traeger AC, Henschke N, Hubscher M, Williams CM, Kamper SJ, Maher CG, Moseley GL, McAuley JH. Estimating the risk of chronic pain: development and validation of a prognostic model (PICKUP) for patients with acute low back pain. PLoS Med. 2016;13(5):e1002019.CrossRefPubMedPubMedCentral
Metadata
Title
Prognostic factors of a favorable outcome following a supervised exercise program for soldiers with sub-acute and chronic low back pain
Authors
Marc Perron
Chantal Gendron
Pierre Langevin
Jean Leblond
Marianne Roos
Jean-Sébastien Roy
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2022-x

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue