Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

Reliability and validity of a novel Kinect-based software program for measuring posture, balance and side-bending

Authors: Wilhelmus Johannes Andreas Grooten, Lisa Sandberg, John Ressman, Nicolas Diamantoglou, Elin Johansson, Eva Rasmussen-Barr

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

Clinical examinations are subjective and often show a low validity and reliability. Objective and highly reliable quantitative assessments are available in laboratory settings using 3D motion analysis, but these systems are too expensive to use for simple clinical examinations. Qinematic™ is an interactive movement analyses system based on the Kinect camera and is an easy-to-use clinical measurement system for assessing posture, balance and side-bending. The aim of the study was to test the test-retest the reliability and construct validity of Qinematic™ in a healthy population, and to calculate the minimal clinical differences for the variables of interest. A further aim was to identify the discriminative validity of Qinematic™ in people with low-back pain (LBP).

Methods

We performed a test-retest reliability study (n = 37) with around 1 week between the occasions, a construct validity study (n = 30) in which Qinematic™ was tested against a 3D motion capture system, and a discriminative validity study, in which a group of people with LBP (n = 20) was compared to healthy controls (n = 17). We tested a large range of psychometric properties of 18 variables in three sections: posture (head and pelvic position, weight distribution), balance (sway area and velocity in single- and double-leg stance), and side-bending.

Results

The majority of the variables in the posture and balance sections, showed poor/fair reliability (ICC < 0.4) and poor/fair validity (Spearman <0.4), with significant differences between occasions, between Qinematic™ and the 3D–motion capture system. In the clinical study, Qinematic™ did not differ between people with LPB and healthy for these variables. For one variable, side-bending to the left, there was excellent reliability (ICC =0.898), excellent validity (r = 0.943), and Qinematic™ could differentiate between LPB and healthy individuals (p = 0.012).

Conclusion

This paper shows that a novel software program (Qinematic™) based on the Kinect camera for measuring balance, posture and side-bending has poor psychometric properties, indicating that the variables on balance and posture should not be used for monitoring individual changes over time or in research. Future research on the dynamic tasks of Qinematic™ is warranted.
Footnotes
1
ICC[3.1] = (BMS – EMS) / (BMS + (k-1)EMS), in which BMS = Between targets mean square, EMS = Residual mean square, k = number of judges.
 
2
SEM = 2*SD*ICC
 
3
MCD = √2 * SEM
 
Literature
1.
go back to reference Gadotti IC, Armijo-Olivo S, Silveira A, Magee D. Reliability of the craniocervical posture assessment: visual and angular measurements using photographs and radiographs. J Manip Physiol Ther. 2013;36(9):619–25.CrossRef Gadotti IC, Armijo-Olivo S, Silveira A, Magee D. Reliability of the craniocervical posture assessment: visual and angular measurements using photographs and radiographs. J Manip Physiol Ther. 2013;36(9):619–25.CrossRef
2.
go back to reference Carlsson H, Rasmussen-Barr E. Clinical screening tests for assessing movement control in non-specific low-back pain. A systematic review of intra- and inter-observer reliability studies. Man Ther. 2013;18(2):103–10.CrossRefPubMed Carlsson H, Rasmussen-Barr E. Clinical screening tests for assessing movement control in non-specific low-back pain. A systematic review of intra- and inter-observer reliability studies. Man Ther. 2013;18(2):103–10.CrossRefPubMed
3.
go back to reference Granstrom H, Ang BO, Rasmussen-Barr E. Movement control tests for the lumbopelvic complex. Are these tests reliable and valid? Physiother Theor Pr. 2017;33(5):386–97.CrossRef Granstrom H, Ang BO, Rasmussen-Barr E. Movement control tests for the lumbopelvic complex. Are these tests reliable and valid? Physiother Theor Pr. 2017;33(5):386–97.CrossRef
4.
go back to reference Monnier A, Heuer J, Norman K, Ang BO. Inter- and intra-observer reliability of clinical movement-control tests for marines. BMC Musculoskelet Disord. 2012;13:263.CrossRefPubMedPubMedCentral Monnier A, Heuer J, Norman K, Ang BO. Inter- and intra-observer reliability of clinical movement-control tests for marines. BMC Musculoskelet Disord. 2012;13:263.CrossRefPubMedPubMedCentral
5.
go back to reference Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease. Gait Posture. 2014;39(4):1062–8.CrossRefPubMed Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease. Gait Posture. 2014;39(4):1062–8.CrossRefPubMed
6.
go back to reference Yang Y, Pu F, Li Y, Li SY, Fan YB, Li DY. Reliability and validity of Kinect RGB-D sensor for assessing standing balance. IEEE Sensors J. 2014;14(5):1633–8.CrossRef Yang Y, Pu F, Li Y, Li SY, Fan YB, Li DY. Reliability and validity of Kinect RGB-D sensor for assessing standing balance. IEEE Sensors J. 2014;14(5):1633–8.CrossRef
7.
go back to reference Yeung LF, Cheng KC, Fong CH, Lee WC, Tong KY. Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway. Gait Posture. 2014;40(4):532–8.CrossRefPubMed Yeung LF, Cheng KC, Fong CH, Lee WC, Tong KY. Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway. Gait Posture. 2014;40(4):532–8.CrossRefPubMed
10.
go back to reference Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737–45.CrossRefPubMed Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737–45.CrossRefPubMed
11.
go back to reference Mokkink LB, Prinsen CA, Bouter LM, Vet HC, Terwee CB. The COnsensus-based standards for the selection of health measurement INstruments (COSMIN) and how to select an outcome measurement instrument. Braz J Phys Ther. 2016;20(2):105–13. Mokkink LB, Prinsen CA, Bouter LM, Vet HC, Terwee CB. The COnsensus-based standards for the selection of health measurement INstruments (COSMIN) and how to select an outcome measurement instrument. Braz J Phys Ther. 2016;20(2):105–13.
12.
go back to reference Grooten WJ, Ang BO, Hagstromer M, Conradsson D, Nero H, Franzen E. Does a dynamic chair increase office workers' movements? - results from a combined laboratory and field study. Appl Ergon. 2017;60:1–11.CrossRefPubMed Grooten WJ, Ang BO, Hagstromer M, Conradsson D, Nero H, Franzen E. Does a dynamic chair increase office workers' movements? - results from a combined laboratory and field study. Appl Ergon. 2017;60:1–11.CrossRefPubMed
13.
go back to reference Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability. Psych Bul. 1979;86:420–8.CrossRef Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability. Psych Bul. 1979;86:420–8.CrossRef
14.
go back to reference Stratford PW, Goldsmith CH. Use of the standard error as a Reliabilty index of interest: an applied example using elbow flexor strength data. Phys Ther. 1997;77:745–50.CrossRefPubMed Stratford PW, Goldsmith CH. Use of the standard error as a Reliabilty index of interest: an applied example using elbow flexor strength data. Phys Ther. 1997;77:745–50.CrossRefPubMed
15.
go back to reference Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–38.CrossRefPubMed Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–38.CrossRefPubMed
16.
go back to reference Altman DG. Practical statistics for medical research. London: Chapman and Hall; 1991. Altman DG. Practical statistics for medical research. London: Chapman and Hall; 1991.
17.
go back to reference Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36(3):372–7. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36(3):372–7.
18.
go back to reference Clark RA, Pua YH, Oliveira CC, Bower KJ, Thilarajah S, Mcgaw R, et al. Reliability and concurrent validity of the Microsoft Xbox one Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–3. Clark RA, Pua YH, Oliveira CC, Bower KJ, Thilarajah S, Mcgaw R, et al. Reliability and concurrent validity of the Microsoft Xbox one Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–3.
19.
go back to reference Gill J, Allum JH, Carpenter MG, Held-Ziolkowska M, Adkin AL, Honegger F, et al. Trunk sway measures of postural stability during clinical balance tests: effects of age. J Gerontol A Biol Sci Med Sci. 2001;56(7):M438–47. Gill J, Allum JH, Carpenter MG, Held-Ziolkowska M, Adkin AL, Honegger F, et al. Trunk sway measures of postural stability during clinical balance tests: effects of age. J Gerontol A Biol Sci Med Sci. 2001;56(7):M438–47.
20.
21.
go back to reference Ruhe A, Fejer R, Walker B. The test-retest reliability of centre of pressure measures in bipedal static task conditions - a systematic review of the literature. Gait Posture. 2010;32(4):436–45. Ruhe A, Fejer R, Walker B. The test-retest reliability of centre of pressure measures in bipedal static task conditions - a systematic review of the literature. Gait Posture. 2010;32(4):436–45.
22.
go back to reference Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80–5.CrossRefPubMed Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80–5.CrossRefPubMed
23.
go back to reference Kiers H, van Dieen JH, Brumagne S, Vanhees L. Postural sway and integration of proprioceptive signals in subjects with LBP. Hum Mov Sci. 2015;39:109–20.CrossRefPubMed Kiers H, van Dieen JH, Brumagne S, Vanhees L. Postural sway and integration of proprioceptive signals in subjects with LBP. Hum Mov Sci. 2015;39:109–20.CrossRefPubMed
24.
go back to reference Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kines. 2003;13(4):361–70.CrossRef Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kines. 2003;13(4):361–70.CrossRef
25.
go back to reference Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech. 2013;46(15):2722–5.CrossRefPubMed Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech. 2013;46(15):2722–5.CrossRefPubMed
26.
go back to reference Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Qual Life Res. 2010;19(4):539–49. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Qual Life Res. 2010;19(4):539–49.
27.
go back to reference Mokkink LB, Terwee CB, Knol DL, Stratford PW, Alonso J, Patrick DL, et al. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: a clarification of its content. BMC Med Res Methodol. 2010;10:22.CrossRefPubMedPubMedCentral Mokkink LB, Terwee CB, Knol DL, Stratford PW, Alonso J, Patrick DL, et al. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: a clarification of its content. BMC Med Res Methodol. 2010;10:22.CrossRefPubMedPubMedCentral
Metadata
Title
Reliability and validity of a novel Kinect-based software program for measuring posture, balance and side-bending
Authors
Wilhelmus Johannes Andreas Grooten
Lisa Sandberg
John Ressman
Nicolas Diamantoglou
Elin Johansson
Eva Rasmussen-Barr
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1927-0

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue