Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Research article

The impact of bone morphology on the outcome of the pivot shift test: a cohort study

Authors: Thomas Branch, Shaun Stinton, Adrija Sharma, Frederic Lavoie, Christian Guier, Philippe Neyret

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Background

The presence of a positive pivot shift after surgical repair of the ACL is considered an important indicator of a failed reconstruction. The ability to predict the result of a pivot shift test after an ACL reconstruction using variables that can be measured prior to surgery could provide an indication of which patients may be at-risk of a poor surgical outcome.The purpose of this study was to determine whether structural characteristics of the femur and tibia, measured using plain radiographs, were associated with the result of the pivot shift test in unilateral ACL reconstructed patients.

Methods

Sixteen patients who had undergone unilateral ACL reconstruction were divided into two groups based on the results of manual pivot shift testing: 1) Pivot group; and 2) No pivot group. All patients had standing true lateral radiographs of both knees. Structural measurements of the tibia and femur were made on both knees. In addition, two new variables were created to describe the tibiofemoral mismatch: 1) Femur Tibia Size Ratio (FTSR); and 2) Tibia to Posterior Femoral Condyle Ratio (TPFCR). These measures were compared within groups and between groups.

Results

None of the individual structural characteristics were significantly different when compared between groups. No individual structural characteristics had a significant association with the presence of a positive pivot shift. When a between-group analysis was performed, both the FTSR (p < 0.03) and the TPFCR (p < 0.01) were significantly different between the Pivot group and the No Pivot group. A larger FTSR ratio, or a larger femur relative to the tibia, was associated with a positive pivot shift. A smaller TPFCR ratio, or a smaller tibial depth relative to the depth of the lateral posterior femoral condyle, was associated with a positive pivot shift.

Conclusions

Structural characteristics in the lateral femoral condyle and lateral tibial plateau were found to be associated with the presence of a positive pivot shift. These characteristics could separate between patients in the Pivot group and the No Pivot group. Two indices, the FTSR and the TPFCR, provided better predictive value than individual characteristics in identifying patients with a knee that was structurally “at-risk” for developing a positive pivot shift.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins, RJ. Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Joint Surg 2002;84-A:1560–1572. Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins, RJ. Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Joint Surg 2002;84-A:1560–1572.
2.
go back to reference Kocher MS, Steadman JR, Briggs K, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:629–34.CrossRefPubMed Kocher MS, Steadman JR, Briggs K, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:629–34.CrossRefPubMed
3.
go back to reference Losee RE, Johnson T, Southwick W. Anterior subluxation of the lateral tibial plateau: a diagnostic test and operative repair. J Bone Joint Surg Am. 1978;60:1015–30.CrossRefPubMed Losee RE, Johnson T, Southwick W. Anterior subluxation of the lateral tibial plateau: a diagnostic test and operative repair. J Bone Joint Surg Am. 1978;60:1015–30.CrossRefPubMed
4.
go back to reference Noyes FR, Barber-Westin SD. Revision anterior cruciate surgery with use of bone-patellar tendon-bone autogenous grafts. J Bone Joint Surg Am. 2001;83-A:1131–43.CrossRefPubMed Noyes FR, Barber-Westin SD. Revision anterior cruciate surgery with use of bone-patellar tendon-bone autogenous grafts. J Bone Joint Surg Am. 2001;83-A:1131–43.CrossRefPubMed
7.
go back to reference Friden T, Jonsson A, Erlandsson T, Jonsson K, Lindstrand A. Effect of femoral condyle configuration on disability after an anterior cruciate ligament rupture. 100 patients followed for 5 years. Acta Orthop Scand. 1993;64:571–4.CrossRefPubMed Friden T, Jonsson A, Erlandsson T, Jonsson K, Lindstrand A. Effect of femoral condyle configuration on disability after an anterior cruciate ligament rupture. 100 patients followed for 5 years. Acta Orthop Scand. 1993;64:571–4.CrossRefPubMed
8.
go back to reference Kujala UM, Nelimarkka O, Koskinen SK. Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg. 1992;111:228–9.CrossRefPubMed Kujala UM, Nelimarkka O, Koskinen SK. Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg. 1992;111:228–9.CrossRefPubMed
9.
go back to reference Boden BP, Breit I, Sheehan FT. Tibiofemoral alignment: contributing factors to noncontact anterior cruciate ligament injury. J Bone Joint Surg Am. 2009;91(10):2381–9.CrossRefPubMedPubMedCentral Boden BP, Breit I, Sheehan FT. Tibiofemoral alignment: contributing factors to noncontact anterior cruciate ligament injury. J Bone Joint Surg Am. 2009;91(10):2381–9.CrossRefPubMedPubMedCentral
10.
go back to reference Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22:894–5.CrossRefPubMed Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22:894–5.CrossRefPubMed
11.
go back to reference Voos JE, Suero EM, Citak M, et al. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc. 2012;20:1626–31.CrossRefPubMed Voos JE, Suero EM, Citak M, et al. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc. 2012;20:1626–31.CrossRefPubMed
12.
go back to reference Yue DB, ES, Wang BL, Wang WG, Guo WS, Zhang QD. Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee. Zhonghua Yi Xue Za Zhi 2013;93:1309–1312. Yue DB, ES, Wang BL, Wang WG, Guo WS, Zhang QD. Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee. Zhonghua Yi Xue Za Zhi 2013;93:1309–1312.
13.
go back to reference Lemaire M, Combelles F. Technique actuelle de plastie ligamentaire pour rupture ancienne du ligament croisé antérieur. Rev Chir Orthop Reparatrice Appar Mot. 1980;66:523–5.PubMed Lemaire M, Combelles F. Technique actuelle de plastie ligamentaire pour rupture ancienne du ligament croisé antérieur. Rev Chir Orthop Reparatrice Appar Mot. 1980;66:523–5.PubMed
14.
go back to reference Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R. Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am. 1985;67:720–6.CrossRefPubMed Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R. Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am. 1985;67:720–6.CrossRefPubMed
15.
go back to reference Losee RE. Concepts of the pivot shift. Clin Orthop Relat Res. 1983;172:45–51. Losee RE. Concepts of the pivot shift. Clin Orthop Relat Res. 1983;172:45–51.
16.
go back to reference Bull AMJ, Amis AA. The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee. 1998;5:141–58.CrossRef Bull AMJ, Amis AA. The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee. 1998;5:141–58.CrossRef
17.
go back to reference Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL. The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol. 2010;18:1232–8.CrossRef Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL. The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol. 2010;18:1232–8.CrossRef
18.
go back to reference Branch TP, Browne JE, Campbell JD. Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc. 2010;18:1379–84.CrossRefPubMed Branch TP, Browne JE, Campbell JD. Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc. 2010;18:1379–84.CrossRefPubMed
19.
go back to reference Salmon LJ, Refshauge KM, Russell VJ, Roe JP, Linklater J, Pinczewski LA. Gender differences in outcome after anterior cruciate ligament reconstruction with hamstring tendon autograft. Am J Sports Med. 2006;34:621–9.CrossRefPubMed Salmon LJ, Refshauge KM, Russell VJ, Roe JP, Linklater J, Pinczewski LA. Gender differences in outcome after anterior cruciate ligament reconstruction with hamstring tendon autograft. Am J Sports Med. 2006;34:621–9.CrossRefPubMed
Metadata
Title
The impact of bone morphology on the outcome of the pivot shift test: a cohort study
Authors
Thomas Branch
Shaun Stinton
Adrija Sharma
Frederic Lavoie
Christian Guier
Philippe Neyret
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1798-4

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue