Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Case report

Percutaneous endoscopic lumbar discectomy: minimally invasive technique for multiple episodes of lumbar disc herniation

Authors: Kyung-Chul Choi, Jin-Sung Kim, Dong Chan Lee, Choon-Keun Park

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Backgrounds

Although open lumbar discectomy is a gold standard surgical technique for lumbar disc herniation (LDH), surgery-induced tissue injury may actually become a source of postsurgical pain. Percutaneous endoscopic lumbar discectomy (PELD) is introduced as a minimal invasive spinal technique for LDH. The PELD has gained popularity and shown successful results. The authors report the clinical usefulness of the PELD technique in two patients with the serial multilevel LDHs.

Case presentations

A 32-year-old man suffered from radicular pain at the L5 dermatome due to the down migrated soft LDH at the L4–5 level. The PELD was performed to remove the ruptured fragments, yielding a complete decompression of the L5 nerve root. Four years later, he visited the clinic because of right leg radiating pain along the S1 dermatome. An MRI scan revealed the LDH at the L5-S1 level. The PELD with foraminoplasty was also performed successfully at the L5-S1 level. Two months after the second PELD, he visited the clinic again because of severe pain along the left L4 dermatome; consequently, the PELD was also performed at the L3–4 level without any complications. A 34-year-old man presented with radiating pain in the back and both legs at the L5 dermatome. The MR images show a disc extrusion at the L4–5. The patient underwent the PELD at the L4–5 via the left approach. After the PELD, the back and leg pain both improved. One year later, the patient suffered from severe pain in the back and the left anterior thigh. The MR images show a left paramedian LDH at the L2–3. After the PELD was performed at the L2–3, the pain was relieved. The final MR images show no signs of any aggravated degeneration of the intervertebral discs or the facet joints at all of the treated levels.

Conclusion

When multiple episodes of LDH occur in a patient’s life span, PELD could be considered as an alternative good technique to treat LDH in each step by preserving normal anatomic structures.
Literature
1.
go back to reference Carragee EJ, Spinnickie AO, Alamin TF, Paragioudakis S. A prospective controlled study of limited versus subtotal posterior discectomy: short-term outcomes in patients with herniated lumbar intervertebral discs and large posterior anular defect. Spine (Phila Pa 1976). 2006;31(6):653–7.CrossRef Carragee EJ, Spinnickie AO, Alamin TF, Paragioudakis S. A prospective controlled study of limited versus subtotal posterior discectomy: short-term outcomes in patients with herniated lumbar intervertebral discs and large posterior anular defect. Spine (Phila Pa 1976). 2006;31(6):653–7.CrossRef
2.
go back to reference Faulhauer K, Manicke C. Fragment excision versus conventional disc removal in the microsurgical treatment of herniated lumbar disc. Acta Neurochir. 1995;133(3–4):107–11.CrossRefPubMed Faulhauer K, Manicke C. Fragment excision versus conventional disc removal in the microsurgical treatment of herniated lumbar disc. Acta Neurochir. 1995;133(3–4):107–11.CrossRefPubMed
3.
go back to reference Mochida J, Nishimura K, Nomura T, Toh E, Chiba M. The importance of preserving disc structure in surgical approaches to lumbar disc herniation. Spine (Phila Pa 1976). 1996;21(13):1556–63.CrossRef Mochida J, Nishimura K, Nomura T, Toh E, Chiba M. The importance of preserving disc structure in surgical approaches to lumbar disc herniation. Spine (Phila Pa 1976). 1996;21(13):1556–63.CrossRef
4.
go back to reference Choi KC, Kim JS, Park CK. Percutaneous endoscopic lumbar Discectomy as an alternative to open lumbar Microdiscectomy for large lumbar disc Herniation. Pain physician. 2016;19(2):E291–300.PubMed Choi KC, Kim JS, Park CK. Percutaneous endoscopic lumbar Discectomy as an alternative to open lumbar Microdiscectomy for large lumbar disc Herniation. Pain physician. 2016;19(2):E291–300.PubMed
5.
go back to reference Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine (Phila Pa 1976). 2008;33(9):931–9.CrossRef Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine (Phila Pa 1976). 2008;33(9):931–9.CrossRef
6.
go back to reference Parker SL, Xu R, McGirt MJ, Witham TF, Long DM, Bydon A. Long-term back pain after a single-level discectomy for radiculopathy: incidence and health care cost analysis. J Neurosurg Spine. 2010;12(2):178–82.CrossRefPubMed Parker SL, Xu R, McGirt MJ, Witham TF, Long DM, Bydon A. Long-term back pain after a single-level discectomy for radiculopathy: incidence and health care cost analysis. J Neurosurg Spine. 2010;12(2):178–82.CrossRefPubMed
7.
go back to reference Son IN, Kim YH, Ha KY. Long-term clinical outcomes and radiological findings and their correlation with each other after standard open discectomy for lumbar disc herniation. J Neurosurg Spine. 2015;22(2):179–84.CrossRefPubMed Son IN, Kim YH, Ha KY. Long-term clinical outcomes and radiological findings and their correlation with each other after standard open discectomy for lumbar disc herniation. J Neurosurg Spine. 2015;22(2):179–84.CrossRefPubMed
8.
go back to reference Steib K, Proescholdt M, Brawanski A, Lange M, Schlaier J, Schebesch KM. Predictors of facet joint syndrome after lumbar disc surgery. J Clin Neurosci. 2012;19(3):418–22.CrossRefPubMed Steib K, Proescholdt M, Brawanski A, Lange M, Schlaier J, Schebesch KM. Predictors of facet joint syndrome after lumbar disc surgery. J Clin Neurosci. 2012;19(3):418–22.CrossRefPubMed
9.
go back to reference Datta G, Gnanalingham KK, Peterson D, Mendoza N, O'Neill K, Van Dellen J, et al. Back pain and disability after lumbar laminectomy: is there a relationship to muscle retraction? Neurosurgery. 2004;54(6):1413–20.CrossRefPubMed Datta G, Gnanalingham KK, Peterson D, Mendoza N, O'Neill K, Van Dellen J, et al. Back pain and disability after lumbar laminectomy: is there a relationship to muscle retraction? Neurosurgery. 2004;54(6):1413–20.CrossRefPubMed
10.
go back to reference Gejo R, Kawaguchi Y, Kondoh T, Tabuchi E, Matsui H, Torii K, et al. Magnetic resonance imaging and histologic evidence of postoperative back muscle injury in rats. Spine (Phila Pa 1976). 2000;25(8):941–6.CrossRef Gejo R, Kawaguchi Y, Kondoh T, Tabuchi E, Matsui H, Torii K, et al. Magnetic resonance imaging and histologic evidence of postoperative back muscle injury in rats. Spine (Phila Pa 1976). 2000;25(8):941–6.CrossRef
11.
go back to reference Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine (Phila Pa 1976). 1994;19(22):2598–602.CrossRef Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine (Phila Pa 1976). 1994;19(22):2598–602.CrossRef
12.
go back to reference Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 1: Histologic and histochemical analyses in rats. Spine (Phila Pa 1976). 1994;19(22):2590–7.CrossRef Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 1: Histologic and histochemical analyses in rats. Spine (Phila Pa 1976). 1994;19(22):2590–7.CrossRef
13.
go back to reference Ozer AF, Oktenoglu T, Sasani M, Bozkus H, Canbulat N, Karaarslan E, et al. Preserving the ligamentum flavum in lumbar discectomy: a new technique that prevents scar tissue formation in the first 6 months postsurgery. Neurosurgery. 2006;59(1 Suppl 1):ONS126–33.PubMed Ozer AF, Oktenoglu T, Sasani M, Bozkus H, Canbulat N, Karaarslan E, et al. Preserving the ligamentum flavum in lumbar discectomy: a new technique that prevents scar tissue formation in the first 6 months postsurgery. Neurosurgery. 2006;59(1 Suppl 1):ONS126–33.PubMed
14.
go back to reference Park YK, Kim JH, Chung HS. Outcome analysis of patients after ligament-sparing microdiscectomy for lumbar disc herniation. Neurosurg Focus. 2002;13(2):E4.CrossRefPubMed Park YK, Kim JH, Chung HS. Outcome analysis of patients after ligament-sparing microdiscectomy for lumbar disc herniation. Neurosurg Focus. 2002;13(2):E4.CrossRefPubMed
15.
go back to reference Ruetten S, Komp M, Godolias G. An extreme lateral access for the surgery of lumbar disc herniations inside the spinal canal using the full-endoscopic uniportal transforaminal approach-technique and prospective results of 463 patients. Spine (Phila Pa 1976). 2005;30(22):2570–8.CrossRef Ruetten S, Komp M, Godolias G. An extreme lateral access for the surgery of lumbar disc herniations inside the spinal canal using the full-endoscopic uniportal transforaminal approach-technique and prospective results of 463 patients. Spine (Phila Pa 1976). 2005;30(22):2570–8.CrossRef
16.
go back to reference Kambin P, Sampson S. Posterolateral percutaneous suction-excision of herniated lumbar intervertebral discs. Report of interim results. Clin Orthop Relat Res. 1986;207:37–43. Kambin P, Sampson S. Posterolateral percutaneous suction-excision of herniated lumbar intervertebral discs. Report of interim results. Clin Orthop Relat Res. 1986;207:37–43.
17.
go back to reference Ahn Y, Jang IT, Kim WK. Transforaminal percutaneous endoscopic lumbar discectomy for very high-grade migrated disc herniation. Clin Neurol Neurosurg. 2016;147:11–7.CrossRefPubMed Ahn Y, Jang IT, Kim WK. Transforaminal percutaneous endoscopic lumbar discectomy for very high-grade migrated disc herniation. Clin Neurol Neurosurg. 2016;147:11–7.CrossRefPubMed
18.
go back to reference Lee SH, Chung SE, Ahn Y, Kim TH, Park JY, Shin SW. Comparative radiologic evaluation of percutaneous endoscopic lumbar discectomy and open microdiscectomy: a matched cohort analysis. Mt Sinai J Med. 2006;73(5):795–801.PubMed Lee SH, Chung SE, Ahn Y, Kim TH, Park JY, Shin SW. Comparative radiologic evaluation of percutaneous endoscopic lumbar discectomy and open microdiscectomy: a matched cohort analysis. Mt Sinai J Med. 2006;73(5):795–801.PubMed
19.
go back to reference Bydon M, Macki M, Kerezoudis P, Sciubba DM, Wolinsky JP, Witham TF, et al. The incidence of adjacent segment disease after lumbar discectomy: a study of 751 patients. J Clin Neurosci. 2017;35:42–6.CrossRefPubMed Bydon M, Macki M, Kerezoudis P, Sciubba DM, Wolinsky JP, Witham TF, et al. The incidence of adjacent segment disease after lumbar discectomy: a study of 751 patients. J Clin Neurosci. 2017;35:42–6.CrossRefPubMed
20.
go back to reference Goel VK, Goyal S, Clark C, Nishiyama K, Nye T. Kinematics of the whole lumbar spine. Effect of discectomy. Spine (Phila Pa 1976). 1985;10(6):543–54.CrossRef Goel VK, Goyal S, Clark C, Nishiyama K, Nye T. Kinematics of the whole lumbar spine. Effect of discectomy. Spine (Phila Pa 1976). 1985;10(6):543–54.CrossRef
21.
go back to reference Kim CH, Chung CK, Park CS, Choi B, Kim MJ, Park BJ. Reoperation rate after surgery for lumbar herniated intervertebral disc disease: nationwide cohort study. Spine (Phila Pa 1976). 2013;38(7):581–90.CrossRef Kim CH, Chung CK, Park CS, Choi B, Kim MJ, Park BJ. Reoperation rate after surgery for lumbar herniated intervertebral disc disease: nationwide cohort study. Spine (Phila Pa 1976). 2013;38(7):581–90.CrossRef
22.
go back to reference Hoogland T, van den Brekel-Dijkstra K, Schubert M, Miklitz B. Endoscopic transforaminal discectomy for recurrent lumbar disc herniation: a prospective, cohort evaluation of 262 consecutive cases. Spine (Phila Pa 1976). 2008;33(9):973–8.CrossRef Hoogland T, van den Brekel-Dijkstra K, Schubert M, Miklitz B. Endoscopic transforaminal discectomy for recurrent lumbar disc herniation: a prospective, cohort evaluation of 262 consecutive cases. Spine (Phila Pa 1976). 2008;33(9):973–8.CrossRef
23.
go back to reference Lee DY, Shim CS, Ahn Y, Choi YG, Kim HJ, Lee SH. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for recurrent disc herniation. J Korean Neurosurg Soc. 2009;46(6):515–21.CrossRefPubMedPubMedCentral Lee DY, Shim CS, Ahn Y, Choi YG, Kim HJ, Lee SH. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for recurrent disc herniation. J Korean Neurosurg Soc. 2009;46(6):515–21.CrossRefPubMedPubMedCentral
24.
go back to reference Hur JW, Kim JS, Shin MH, Ryu KS, Park CK, Lee SH. Percutaneous endoscopic lumbar discectomy and annuloplasty for lumbar disc herniation at the low two contiguous levels: single-portal, double surgeries. J Neurol Surg A Cent Eur Neurosurg. 2014;75(5):381–5.CrossRefPubMed Hur JW, Kim JS, Shin MH, Ryu KS, Park CK, Lee SH. Percutaneous endoscopic lumbar discectomy and annuloplasty for lumbar disc herniation at the low two contiguous levels: single-portal, double surgeries. J Neurol Surg A Cent Eur Neurosurg. 2014;75(5):381–5.CrossRefPubMed
25.
go back to reference Lee DY, Lee SH. Learning curve for percutaneous endoscopic lumbar discectomy. Neurol Med Chir (Tokyo). 2008;48(9):383–8.CrossRef Lee DY, Lee SH. Learning curve for percutaneous endoscopic lumbar discectomy. Neurol Med Chir (Tokyo). 2008;48(9):383–8.CrossRef
26.
go back to reference Choi KC, Lee JH, Kim JS, Sabal LA, Lee S, Kim H, et al. Unsuccessful percutaneous endoscopic lumbar discectomy: a single-center experience of 10,228 cases. Neurosurgery. 2015;76(4):372–80.CrossRefPubMed Choi KC, Lee JH, Kim JS, Sabal LA, Lee S, Kim H, et al. Unsuccessful percutaneous endoscopic lumbar discectomy: a single-center experience of 10,228 cases. Neurosurgery. 2015;76(4):372–80.CrossRefPubMed
Metadata
Title
Percutaneous endoscopic lumbar discectomy: minimally invasive technique for multiple episodes of lumbar disc herniation
Authors
Kyung-Chul Choi
Jin-Sung Kim
Dong Chan Lee
Choon-Keun Park
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1697-8

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue