Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Research article

Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes

Authors: Hanne Leirbekk Mjøsund, Eleanor Boyle, Per Kjaer, Rune Mygind Mieritz, Tue Skallgård, Peter Kent

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Background

Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system.

Methods

To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included – 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant’s skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method.

Results

We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination.

Conclusions

We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system’s ability to measure lumbar motion in more complex 3D functional movements and to measure changes of movement patterns related to treatment effects.
Literature
1.
go back to reference Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, Williams G, Smith E, Vos T, Barendregt J, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73(6):968–74.CrossRefPubMed Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, Williams G, Smith E, Vos T, Barendregt J, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73(6):968–74.CrossRefPubMed
2.
go back to reference Laird RA, Gilbert J, Kent P, Keating JL. Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2014;15:229.CrossRefPubMedPubMedCentral Laird RA, Gilbert J, Kent P, Keating JL. Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2014;15:229.CrossRefPubMedPubMedCentral
3.
go back to reference Leardini A, Biagi F, Belvedere C, Benedetti MG. Quantitative comparison of current models for trunk motion in human movement analysis. Clin Biomech (Bristol, Avon). 2009;24(7):542–50.CrossRef Leardini A, Biagi F, Belvedere C, Benedetti MG. Quantitative comparison of current models for trunk motion in human movement analysis. Clin Biomech (Bristol, Avon). 2009;24(7):542–50.CrossRef
4.
go back to reference Richards JG. The measurement of human motion: A comparison of commercially available systems. Hum Mov Sci. 1999;18(5):589–602.CrossRef Richards JG. The measurement of human motion: A comparison of commercially available systems. Hum Mov Sci. 1999;18(5):589–602.CrossRef
5.
go back to reference Kolber MJ, Pizzini M, Robinson A, Yanez D, Hanney WJ. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: an analysis of an iphone(R) application and gravity based inclinometry. Int J Sports Phys Ther. 2013;8(2):129–37.PubMedPubMedCentral Kolber MJ, Pizzini M, Robinson A, Yanez D, Hanney WJ. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: an analysis of an iphone(R) application and gravity based inclinometry. Int J Sports Phys Ther. 2013;8(2):129–37.PubMedPubMedCentral
6.
go back to reference Intolo P, Carman AB, Milosavljevic S, Abbott JH, Baxter GD. The Spineangel: Examining the validity and reliability of a novel clinical device for monitoring trunk motion. Man Ther. 2010;15(2):160–6.CrossRefPubMed Intolo P, Carman AB, Milosavljevic S, Abbott JH, Baxter GD. The Spineangel: Examining the validity and reliability of a novel clinical device for monitoring trunk motion. Man Ther. 2010;15(2):160–6.CrossRefPubMed
7.
go back to reference Ribeiro DC, Sole G, Abbott JH, Milosavljevic S. Validity and reliability of the Spineangel lumbo-pelvic postural monitor. Ergonomics. 2013;56(6):977–91.CrossRefPubMed Ribeiro DC, Sole G, Abbott JH, Milosavljevic S. Validity and reliability of the Spineangel lumbo-pelvic postural monitor. Ergonomics. 2013;56(6):977–91.CrossRefPubMed
8.
go back to reference O’Sullivan K, Verschueren S, Pans S, Smets D, Dekelver K, Dankaerts W. Validation of a novel spinal posture monitor: comparison with digital videofluoroscopy. Eur Spine J. 2012;21(12):2633–9.CrossRefPubMedPubMedCentral O’Sullivan K, Verschueren S, Pans S, Smets D, Dekelver K, Dankaerts W. Validation of a novel spinal posture monitor: comparison with digital videofluoroscopy. Eur Spine J. 2012;21(12):2633–9.CrossRefPubMedPubMedCentral
9.
go back to reference Goodvin C, Park EJ, Huang K, Sakaki K. Development of a real-time three-dimensional spinal motion measurement system for clinical practice. Med Biol Eng Comput. 2006;44(12):1061–75.CrossRefPubMed Goodvin C, Park EJ, Huang K, Sakaki K. Development of a real-time three-dimensional spinal motion measurement system for clinical practice. Med Biol Eng Comput. 2006;44(12):1061–75.CrossRefPubMed
11.
go back to reference Ronchi AJ, Lech M, Taylor NF, Cosic I. A reliability study of the new Back Strain Monitor based on clinical trials. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:693–6.PubMed Ronchi AJ, Lech M, Taylor NF, Cosic I. A reliability study of the new Back Strain Monitor based on clinical trials. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:693–6.PubMed
12.
go back to reference Charry E, Umer M, Taylor S. Design and validation of an ambulatory inertial system for 3-D measurements of low back movements. In: Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International Conference on: 6-9 Dec. 2011 2011; 2011. p. 58-63. Charry E, Umer M, Taylor S. Design and validation of an ambulatory inertial system for 3-D measurements of low back movements. In: Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International Conference on: 6-9 Dec. 2011 2011; 2011. p. 58-63.
13.
go back to reference Haneline MT, Cooperstein R, Young M, Birkeland K. Spinal motion palpation: a comparison of studies that assessed intersegmental end feel vs excursion. J Manip Physiol Ther. 2008;31(8):616–26.CrossRef Haneline MT, Cooperstein R, Young M, Birkeland K. Spinal motion palpation: a comparison of studies that assessed intersegmental end feel vs excursion. J Manip Physiol Ther. 2008;31(8):616–26.CrossRef
14.
go back to reference Hestbaek L, Leboeuf-Yde C. Are chiropractic tests for the lumbo-pelvic spine reliable and valid? A systematic critical literature review. J Manip Physiol Ther. 2000;23(4):258–75.CrossRef Hestbaek L, Leboeuf-Yde C. Are chiropractic tests for the lumbo-pelvic spine reliable and valid? A systematic critical literature review. J Manip Physiol Ther. 2000;23(4):258–75.CrossRef
15.
go back to reference Seffinger MA, Najm WI, Mishra SI, Adams A, Dickerson VM, Murphy LS, Reinsch S. Reliability of spinal palpation for diagnosis of back and neck pain: a systematic review of the literature. Spine. 2004;29(19):E413–25.CrossRefPubMed Seffinger MA, Najm WI, Mishra SI, Adams A, Dickerson VM, Murphy LS, Reinsch S. Reliability of spinal palpation for diagnosis of back and neck pain: a systematic review of the literature. Spine. 2004;29(19):E413–25.CrossRefPubMed
16.
go back to reference Dionne CE, Dunn KM, Croft PR, Nachemson AL, Buchbinder R, Walker BF, Wyatt M, Cassidy JD, Rossignol M, Leboeuf-Yde C, et al. A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine. 2008;33(1):95–103.CrossRefPubMed Dionne CE, Dunn KM, Croft PR, Nachemson AL, Buchbinder R, Walker BF, Wyatt M, Cassidy JD, Rossignol M, Leboeuf-Yde C, et al. A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine. 2008;33(1):95–103.CrossRefPubMed
17.
go back to reference Stanton TR, Latimer J, Maher CG, Hancock MJ. A modified Delphi approach to standardize low back pain recurrence terminology. Eur Spine J. 2011;20(5):744–52.CrossRefPubMed Stanton TR, Latimer J, Maher CG, Hancock MJ. A modified Delphi approach to standardize low back pain recurrence terminology. Eur Spine J. 2011;20(5):744–52.CrossRefPubMed
18.
go back to reference Albert HB, Jensen AM, Dahl D, Rasmussen MN. Criteria validation of the Roland Morris questionnaire. A Danish translation of the international scale for the assessment of functional level in patients with low back pain and sciatica. Ugeskr Laeger. 2003;165(18):1875–80.PubMed Albert HB, Jensen AM, Dahl D, Rasmussen MN. Criteria validation of the Roland Morris questionnaire. A Danish translation of the international scale for the assessment of functional level in patients with low back pain and sciatica. Ugeskr Laeger. 2003;165(18):1875–80.PubMed
19.
go back to reference Jensen MP, Turner JA, Romano JM, Fisher LD. Comparative reliability and validity of chronic pain intensity measures. Pain. 1999;83(2):157–62.CrossRefPubMed Jensen MP, Turner JA, Romano JM, Fisher LD. Comparative reliability and validity of chronic pain intensity measures. Pain. 1999;83(2):157–62.CrossRefPubMed
21.
go back to reference Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82.CrossRefPubMed Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82.CrossRefPubMed
22.
go back to reference O’Sullivan K, O’Sullivan L, Campbell A, O’Sullivan P, Dankaerts W. Towards monitoring lumbo-pelvic posture in real-life situations: Concurrent validity of a novel posture monitor and a traditional laboratory-based motion analysis system. Man Ther. 2012;17(1):77–83.CrossRefPubMed O’Sullivan K, O’Sullivan L, Campbell A, O’Sullivan P, Dankaerts W. Towards monitoring lumbo-pelvic posture in real-life situations: Concurrent validity of a novel posture monitor and a traditional laboratory-based motion analysis system. Man Ther. 2012;17(1):77–83.CrossRefPubMed
23.
go back to reference Nitschke JE, Nattrass CL, Disler PB, Chou MJ, Ooi KT. Reliability of the American Medical Association guides’ model for measuring spinal range of motion. Its implication for whole-person impairment rating. Spine. 1999;24(3):262–8.CrossRefPubMed Nitschke JE, Nattrass CL, Disler PB, Chou MJ, Ooi KT. Reliability of the American Medical Association guides’ model for measuring spinal range of motion. Its implication for whole-person impairment rating. Spine. 1999;24(3):262–8.CrossRefPubMed
24.
go back to reference Ha TH, Saber-Sheikh K, Moore AP, Jones MP. Measurement of lumbar spine range of movement and coupled motion using inertial sensors - a protocol validity study. Man Ther. 2013;18(1):87–91.CrossRefPubMed Ha TH, Saber-Sheikh K, Moore AP, Jones MP. Measurement of lumbar spine range of movement and coupled motion using inertial sensors - a protocol validity study. Man Ther. 2013;18(1):87–91.CrossRefPubMed
25.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed
26.
go back to reference Laird RA, Kent P, Keating JL. How consistent are lordosis, range of movement and lumbo-pelvic rhythm in people with and without back pain? BMC Musculoskelet Dis. 2016;17(1):403.CrossRef Laird RA, Kent P, Keating JL. How consistent are lordosis, range of movement and lumbo-pelvic rhythm in people with and without back pain? BMC Musculoskelet Dis. 2016;17(1):403.CrossRef
Metadata
Title
Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes
Authors
Hanne Leirbekk Mjøsund
Eleanor Boyle
Per Kjaer
Rune Mygind Mieritz
Tue Skallgård
Peter Kent
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1489-1

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue