Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Research article

Induced membrane technique for the treatment of chronic hematogenous tibia osteomyelitis

Authors: Xiaohua Wang, Zhen Wang, Jingshu Fu, Ke Huang, Zhao Xie

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Background

Chronic hematogenous osteomyelitis often results from the improper treatment of acute hematogenous osteomyelitis. At present, there is lack of uniform standards for the treatment, and the clinical features of the disease are unclear. The purpose of this study was to explore the clinical efficacy and complications of chronic hematogenous tibia osteomyelitis treated with the induced membrane technique.

Methods

A retrospective analysis of the chronic hematogenous tibia osteomyelitis patients in our department admitted from January 2013 to February 2014 and treated with the induced membrane two-stage surgical technique was performed. The defects were filled with antibiotic-loaded polymethyl methacrylate (PMMA) cement after radical debridement, and bone grafts were implanted to repair the defects after 6 to 8 weeks.

Results

A total of 15 cases were admitted in this study, including 13 men and 2 women with a mean age of 34 years (6 to 51). The mean duration of bone infection was 142 months (3 to 361). All patients were cured with an average follow-up of 25 months (24 to 28). Radiographic bone union occurred in 5.3 months (3 to 8), and full weight bearing occurred in 6.7 months (4 to 10). No recurrence of infection was noted at the last follow-up. Two cases required repeated debridement before grafting due to recurrent infection. One patient had a small bone diameter due to insufficient grafting, and one patient had limitation of knee activity.

Conclusions

The induced membrane technique for the treatment of chronic hematogenous tibia osteomyelitis is an effective and reliable method. Thorough debridement and wound closure at the first stage is essential for infection control as well as sufficient grafting at the second stage to ensure bone union.
Literature
1.
go back to reference Agarwal A, Aggarwal AN. Bone and Joint Infections in Children: Acute Hematogenous Osteomyelitis. Indian J Pediatr. 2016;83(8):817–24.CrossRefPubMed Agarwal A, Aggarwal AN. Bone and Joint Infections in Children: Acute Hematogenous Osteomyelitis. Indian J Pediatr. 2016;83(8):817–24.CrossRefPubMed
2.
go back to reference Thein R, Tenenbaum S, Chechick O, et al. Delay in diagnosis of femoral hematogenous osteomyelitis in adults: an elusive disease with poor outcome. Isr Med Assoc J. 2013;15(2):85–8.PubMed Thein R, Tenenbaum S, Chechick O, et al. Delay in diagnosis of femoral hematogenous osteomyelitis in adults: an elusive disease with poor outcome. Isr Med Assoc J. 2013;15(2):85–8.PubMed
3.
go back to reference Ibingira CB. Chronic osteomyelitis in a Ugandan rural setting. East Afr Med J. 2003;80(5):242–6.PubMed Ibingira CB. Chronic osteomyelitis in a Ugandan rural setting. East Afr Med J. 2003;80(5):242–6.PubMed
4.
go back to reference Sanders J, Mauffrey C. Long bone osteomyelitis in adults: fundamental concepts and current techniques. Orthopedics. 2013;36(5):368–75.CrossRefPubMed Sanders J, Mauffrey C. Long bone osteomyelitis in adults: fundamental concepts and current techniques. Orthopedics. 2013;36(5):368–75.CrossRefPubMed
5.
6.
go back to reference Masquelet AC, Fitoussi F, Begue T, et al. Reconstruction of the long bones by the induced membrane and spongy autograft. Annales de chirurgie plastique et esthetique. 2000;45(3):346–53.PubMed Masquelet AC, Fitoussi F, Begue T, et al. Reconstruction of the long bones by the induced membrane and spongy autograft. Annales de chirurgie plastique et esthetique. 2000;45(3):346–53.PubMed
7.
go back to reference Canavese F, Corradin M, Khan A, et al. Successful treatment of chronic osteomyelitis in children with debridement, antibiotic-laden cement spacer and bone graft substitute. Eur J Orthop Surg Traumatol. 2016:1-8. Canavese F, Corradin M, Khan A, et al. Successful treatment of chronic osteomyelitis in children with debridement, antibiotic-laden cement spacer and bone graft substitute. Eur J Orthop Surg Traumatol. 2016:1-8.
8.
go back to reference Wang X, Luo F, Huang K, et al. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. Bone Joint Res. 2016;5(3):101–5.CrossRefPubMedPubMedCentral Wang X, Luo F, Huang K, et al. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. Bone Joint Res. 2016;5(3):101–5.CrossRefPubMedPubMedCentral
9.
go back to reference Mouzopoulos G, Kanakaris NK, Kontakis G, et al. Management of bone infections in adults: the surgeon's and microbiologist's perspectives. Injury. 2011;42 Suppl 5:S18–23.CrossRefPubMed Mouzopoulos G, Kanakaris NK, Kontakis G, et al. Management of bone infections in adults: the surgeon's and microbiologist's perspectives. Injury. 2011;42 Suppl 5:S18–23.CrossRefPubMed
10.
go back to reference Haidar R, Der Boghossian A, Atiyeh B. Duration of post-surgical antibiotics in chronic osteomyelitis: empiric or evidence-based? Int J Infect Dis. 2010;14(9):e752–758.CrossRefPubMed Haidar R, Der Boghossian A, Atiyeh B. Duration of post-surgical antibiotics in chronic osteomyelitis: empiric or evidence-based? Int J Infect Dis. 2010;14(9):e752–758.CrossRefPubMed
11.
go back to reference Tetsworth K, Cierny G, 3rd. Osteomyelitis debridement techniques. Clin Orthop Relat Res. 1999;360(360):87–96. Tetsworth K, Cierny G, 3rd. Osteomyelitis debridement techniques. Clin Orthop Relat Res. 1999;360(360):87–96.
12.
go back to reference Parsons B, Strauss E. Surgical management of chronic osteomyelitis. Am J Surg. 2004;188(1):57–66.CrossRefPubMed Parsons B, Strauss E. Surgical management of chronic osteomyelitis. Am J Surg. 2004;188(1):57–66.CrossRefPubMed
13.
go back to reference Stafford PR, Norris BL. Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury. 2010;41 Suppl 2:S72–77.CrossRefPubMed Stafford PR, Norris BL. Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury. 2010;41 Suppl 2:S72–77.CrossRefPubMed
14.
go back to reference Dendrinos GK, Kontos S, Lyritsis E. Use of the Ilizarov technique for treatment of non-union of the tibia associated with infection. J Bone Joint Surg Am. 1995;77(6):835–46.CrossRefPubMed Dendrinos GK, Kontos S, Lyritsis E. Use of the Ilizarov technique for treatment of non-union of the tibia associated with infection. J Bone Joint Surg Am. 1995;77(6):835–46.CrossRefPubMed
15.
go back to reference Gao YS, Ai ZS, Yu XW, et al. Free vascularised fibular grafting combined with a locking plate for massive bone defects in the lower limbs: a retrospective analysis of fibular hypertrophy in 18 cases. Injury. 2012;43(7):1090–5.CrossRefPubMed Gao YS, Ai ZS, Yu XW, et al. Free vascularised fibular grafting combined with a locking plate for massive bone defects in the lower limbs: a retrospective analysis of fibular hypertrophy in 18 cases. Injury. 2012;43(7):1090–5.CrossRefPubMed
16.
go back to reference Giannoudis PV, Faour O, Goff T, et al. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42(6):591–8.CrossRefPubMed Giannoudis PV, Faour O, Goff T, et al. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42(6):591–8.CrossRefPubMed
17.
go back to reference Hwang HJ, Jeong WK, Lee DH, et al. Acute Primary Hematogenous Osteomyelitis in the Epiphysis of the Distal Tibia: A Case Report With Review of the Literature. J Foot Ankle Surg. 2016;55(3):600-604. Hwang HJ, Jeong WK, Lee DH, et al. Acute Primary Hematogenous Osteomyelitis in the Epiphysis of the Distal Tibia: A Case Report With Review of the Literature. J Foot Ankle Surg. 2016;55(3):600-604.
18.
go back to reference Manche E, Rombouts-Godin V, Rombouts JJ. Acute hematogenous osteomyelitis due to ordinary germs in children with closed injuries. Study of a series of 44 cases. Acta Orthop Belg. 1991;57(2):91–6.PubMed Manche E, Rombouts-Godin V, Rombouts JJ. Acute hematogenous osteomyelitis due to ordinary germs in children with closed injuries. Study of a series of 44 cases. Acta Orthop Belg. 1991;57(2):91–6.PubMed
19.
go back to reference Agrawal R, Sharma D, Dhiman P, et al. Clinical and haematological predictors of acute hematogenous Methicillin Resistant Staphylococcus aureus (MRSA) osteomyelitis & septic arthritis. J Orthop. 2015;12(3):137–41.CrossRefPubMedPubMedCentral Agrawal R, Sharma D, Dhiman P, et al. Clinical and haematological predictors of acute hematogenous Methicillin Resistant Staphylococcus aureus (MRSA) osteomyelitis & septic arthritis. J Orthop. 2015;12(3):137–41.CrossRefPubMedPubMedCentral
20.
go back to reference Ratnayake K, Davis AJ, Brown L. Pediatric acute osteomyelitis in the postvaccine, methicillin-resistant Staphylococcus aureus era. Am J Emerg Med. 2015;33(10):1420–4.CrossRefPubMed Ratnayake K, Davis AJ, Brown L. Pediatric acute osteomyelitis in the postvaccine, methicillin-resistant Staphylococcus aureus era. Am J Emerg Med. 2015;33(10):1420–4.CrossRefPubMed
21.
go back to reference Osman AE, Mubasher M, ElSheikh NE, et al. Investigation of polymorphisms in anti-inflammatory cytokine genes in hematogenous osteomyelitis. Genet Mol Res. 2015;14(4):16981–6.CrossRefPubMed Osman AE, Mubasher M, ElSheikh NE, et al. Investigation of polymorphisms in anti-inflammatory cytokine genes in hematogenous osteomyelitis. Genet Mol Res. 2015;14(4):16981–6.CrossRefPubMed
22.
go back to reference Perry CR, Pearson RL, Miller GA. Accuracy of cultures of material from swabbing of the superficial aspect of the wound and needle biopsy in the preoperative assessment of osteomyelitis. J Bone Joint Surg Am. 1991;73(5):745–9.CrossRefPubMed Perry CR, Pearson RL, Miller GA. Accuracy of cultures of material from swabbing of the superficial aspect of the wound and needle biopsy in the preoperative assessment of osteomyelitis. J Bone Joint Surg Am. 1991;73(5):745–9.CrossRefPubMed
23.
go back to reference Sheehy SH, Atkins BA, Bejon P, et al. The microbiology of chronic osteomyelitis: prevalence of resistance to common empirical anti-microbial regimens. J Infect. 2010;60(5):338–43.CrossRefPubMed Sheehy SH, Atkins BA, Bejon P, et al. The microbiology of chronic osteomyelitis: prevalence of resistance to common empirical anti-microbial regimens. J Infect. 2010;60(5):338–43.CrossRefPubMed
24.
go back to reference Rao N, Ziran BH, Lipsky BA. Treating osteomyelitis: antibiotics and surgery. Plast Reconstr Surg. 2011;127 Suppl 1:177S–87S.CrossRefPubMed Rao N, Ziran BH, Lipsky BA. Treating osteomyelitis: antibiotics and surgery. Plast Reconstr Surg. 2011;127 Suppl 1:177S–87S.CrossRefPubMed
25.
go back to reference Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am. 2004;86-A(10):2305–18.CrossRefPubMed Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am. 2004;86-A(10):2305–18.CrossRefPubMed
26.
go back to reference Mader JT, Shirtliff ME, Bergquist SC. Antimicrobial treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1999;360:47–65.CrossRef Mader JT, Shirtliff ME, Bergquist SC. Antimicrobial treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1999;360:47–65.CrossRef
27.
go back to reference Shuford JA, Steckelberg JM. Role of oral antimicrobial therapy in the management of osteomyelitis. Curr Opin Infect Dis. 2003;16(6):515–9.CrossRefPubMed Shuford JA, Steckelberg JM. Role of oral antimicrobial therapy in the management of osteomyelitis. Curr Opin Infect Dis. 2003;16(6):515–9.CrossRefPubMed
28.
go back to reference Salgado CJ, Mardini S, Jamali AA, et al. Muscle versus nonmuscle flaps in the reconstruction of chronic osteomyelitis defects. Plast Reconstr Surg. 2006;118(6):1401–11.CrossRefPubMed Salgado CJ, Mardini S, Jamali AA, et al. Muscle versus nonmuscle flaps in the reconstruction of chronic osteomyelitis defects. Plast Reconstr Surg. 2006;118(6):1401–11.CrossRefPubMed
29.
go back to reference Knopp W, Kiztan T, Muhr G. Soft tissue covers in chronic osteitis. Handchir Mikrochir Plast Chir. 1987;19(2):98–103.PubMed Knopp W, Kiztan T, Muhr G. Soft tissue covers in chronic osteitis. Handchir Mikrochir Plast Chir. 1987;19(2):98–103.PubMed
30.
go back to reference Henry SL, Seligson D, Mangino P. Antibiotic-impregnated beads. Part I: Bead implantation versus systemic therapy. Orthop Rev. 1991;20(3):242–7.PubMed Henry SL, Seligson D, Mangino P. Antibiotic-impregnated beads. Part I: Bead implantation versus systemic therapy. Orthop Rev. 1991;20(3):242–7.PubMed
31.
go back to reference Bhaskar Borgohain NB, Tashi Khonglah. Complete incorporation of long diaphyseal sequestrum without surgical intervention in chronic hematogenous osteomyelitis of tibia in an immunocompetent child. Adv Biomed Res. 2014; 3(1):95. Bhaskar Borgohain NB, Tashi Khonglah. Complete incorporation of long diaphyseal sequestrum without surgical intervention in chronic hematogenous osteomyelitis of tibia in an immunocompetent child. Adv Biomed Res. 2014; 3(1):95.
32.
go back to reference Rubino C, Figus A, Mazzocchi M, et al. The propeller flap for chronic osteomyelitis of the lower extremities: a case report. Journal of plastic, reconstructive & aesthetic surgery. JPRAS. 2009;62(10):e401–404.PubMed Rubino C, Figus A, Mazzocchi M, et al. The propeller flap for chronic osteomyelitis of the lower extremities: a case report. Journal of plastic, reconstructive & aesthetic surgery. JPRAS. 2009;62(10):e401–404.PubMed
33.
go back to reference Masquelet AC. Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbeck's archives of surgery / Deutsche Gesellschaft fur Chirurgie. 2003;388(5):344–6.CrossRef Masquelet AC. Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbeck's archives of surgery / Deutsche Gesellschaft fur Chirurgie. 2003;388(5):344–6.CrossRef
34.
go back to reference Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27–37. table of contents.CrossRefPubMed Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27–37. table of contents.CrossRefPubMed
Metadata
Title
Induced membrane technique for the treatment of chronic hematogenous tibia osteomyelitis
Authors
Xiaohua Wang
Zhen Wang
Jingshu Fu
Ke Huang
Zhao Xie
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1395-6

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue