Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

The effect of the rotator interval on glenohumeral kinematics during abduction

Authors: Babak Haghpanah, Kempland C. Walley, Andreas Hingsammer, Ethan R. Harlow, Ramin Oftadeh, Ashkan Vaziri, Arun J. Ramappa, Joseph P. DeAngelis, Ara Nazarian

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

The rotator interval (RI) has been exploited as a potentially benign point of entry into the glenohumeral (GH) joint. Bounded by the supraspinatus, subscapularis and coracoid process of the scapula, the RI is believed to be important in the shoulder’s soft tissue balancing and function. However, the role of the RI in shoulder kinematics is not fully understood. The purpose of this study is to describe the effect of the RI on GH motion during abduction of the arm.

Methods

Six shoulders from three cadaveric torsos were studied to assess the impact of changes in the RI during abduction under four conditions: Intact (Baseline), Opened, Repaired (repaired with side-to-side tissue approximation, no overlap) and Tightened (repaired with 1 cm overlap). For each group, the GH translation and area under the Curve (AUC) were measured during abduction using an intact cadaveric shoulder (intact torso).

Results

GH kinematics varied in response to each intervention and throughout the entire abduction arc. Opening the RI caused a significant change in GH translation. The Repair and Tightened groups behaved similarly along all axes of GH motion.

Conclusions

The RI is central to normal GH kinematics. Any insult to the tissue’s integrity alters the shoulder’s motion throughout abduction. In this model, closing the RI side-to-side has the same effect as tightening the RI. Since suture closure may offer the same benefit as tightening the RI, clinicians should consider this effect when treating patients with shoulder laxity. This investigation provides an improved perspective on the role of the RI on GH kinematics during abduction. When managing shoulder pathology, surgeons should consider how these different methods of RI closure affect the joint’s motion. In different circumstances, the surgical approach to the RI can be tailored to address each patient’s specific needs.
Literature
1.
go back to reference Woerther K. Rotator Interval. Semin Musculoskelet Radiol. 2015;3:243–53. Epub July 19, 2015. Woerther K. Rotator Interval. Semin Musculoskelet Radiol. 2015;3:243–53. Epub July 19, 2015.
2.
go back to reference Itoi E, Berglund L, Grabowski J, Naggar L, Morrey B, Kain-Nan A. Superior-inferior stability of the shoulder: role of the coracohumeral ligament and the rotator interval capsule. Mayo Clin Proc. 1998;73(6):508–15.PubMedCrossRef Itoi E, Berglund L, Grabowski J, Naggar L, Morrey B, Kain-Nan A. Superior-inferior stability of the shoulder: role of the coracohumeral ligament and the rotator interval capsule. Mayo Clin Proc. 1998;73(6):508–15.PubMedCrossRef
3.
go back to reference Harryman 2nd DT, Sidles JA, Harris SL, Matsen 3rd FA. The role of the rotator interval capsule in passive motion and stability of the shoulder. J Bone Joint Surg Am. 1992;74(1):53–66. PubMed.PubMed Harryman 2nd DT, Sidles JA, Harris SL, Matsen 3rd FA. The role of the rotator interval capsule in passive motion and stability of the shoulder. J Bone Joint Surg Am. 1992;74(1):53–66. PubMed.PubMed
4.
go back to reference Simovitch R, Fullick R, Kwon Y, Zuckerman JD. Use of the supscapularis Preserving Technique in Anatomic Total Shoulder Arthroplasty. Bull Hosp Jt Dis. 2013;7 Suppl 2:S94–100. Simovitch R, Fullick R, Kwon Y, Zuckerman JD. Use of the supscapularis Preserving Technique in Anatomic Total Shoulder Arthroplasty. Bull Hosp Jt Dis. 2013;7 Suppl 2:S94–100.
5.
go back to reference Entezari V, Della Croce U, DeAngelis J, Ramappa A, Nazarian A, Trechsel B, et al. Design and manufacture of a novel system to simulate the biomechanics of basic and pitching shoulder motion. Bone Joint Res. 2012;1(5):78–85.PubMedPubMedCentralCrossRef Entezari V, Della Croce U, DeAngelis J, Ramappa A, Nazarian A, Trechsel B, et al. Design and manufacture of a novel system to simulate the biomechanics of basic and pitching shoulder motion. Bone Joint Res. 2012;1(5):78–85.PubMedPubMedCentralCrossRef
6.
go back to reference Rosso C, Muller AM, Entezari V, Dow WA, McKenzie B, Stanton SK, et al. Preliminary evaluation of a robotic apparatus for the analysis of passive glenohumeral joint kinematics. J Orthop Surg Res. 2013;8(1):24. PubMed Pubmed Central PMCID: 3724692.PubMedPubMedCentralCrossRef Rosso C, Muller AM, Entezari V, Dow WA, McKenzie B, Stanton SK, et al. Preliminary evaluation of a robotic apparatus for the analysis of passive glenohumeral joint kinematics. J Orthop Surg Res. 2013;8(1):24. PubMed Pubmed Central PMCID: 3724692.PubMedPubMedCentralCrossRef
7.
go back to reference Entezari V, Trechsel BL, Dow WA, Stanton SK, Rosso C, Muller A, et al. Design and manufacture of a novel system to simulate the biomechanics of basic and pitching shoulder motion. Bone Jt Res. 2012;1(5):78–85. PubMed Pubmed Central PMCID: 3626244.CrossRef Entezari V, Trechsel BL, Dow WA, Stanton SK, Rosso C, Muller A, et al. Design and manufacture of a novel system to simulate the biomechanics of basic and pitching shoulder motion. Bone Jt Res. 2012;1(5):78–85. PubMed Pubmed Central PMCID: 3626244.CrossRef
8.
go back to reference Mueller AM, Entezari V, Rosso C, McKenzie B, Hasebrock A, Cereatti A, et al. The effect of simulated scapular winging on glenohumeral joint translations. J Shoulder Elb Surg. 2013;22(7):986–92.CrossRef Mueller AM, Entezari V, Rosso C, McKenzie B, Hasebrock A, Cereatti A, et al. The effect of simulated scapular winging on glenohumeral joint translations. J Shoulder Elb Surg. 2013;22(7):986–92.CrossRef
9.
go back to reference Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981–92. PubMed Epub 2005/04/23. eng.PubMedCrossRef Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981–92. PubMed Epub 2005/04/23. eng.PubMedCrossRef
10.
go back to reference Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech. 1998;31(1):93–6. PubMed.PubMedCrossRef Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech. 1998;31(1):93–6. PubMed.PubMedCrossRef
11.
go back to reference Rowe CR, Zarins B. Recurrent transient subluxation of the shoulder. J Bone Joint Surg Am. 1981;63(6):863–72. PubMed.PubMed Rowe CR, Zarins B. Recurrent transient subluxation of the shoulder. J Bone Joint Surg Am. 1981;63(6):863–72. PubMed.PubMed
12.
go back to reference Gartsman GM, Roddey TS, Hammerman SM. Arthroscopic treatment of anterior-inferior glenohumeral instability. Two to five-year follow-up. J Bone Joint Surg Am. 2000;82-A(7):991–1003. PubMed.PubMed Gartsman GM, Roddey TS, Hammerman SM. Arthroscopic treatment of anterior-inferior glenohumeral instability. Two to five-year follow-up. J Bone Joint Surg Am. 2000;82-A(7):991–1003. PubMed.PubMed
13.
go back to reference Zarins B, McMahon MS, Rowe CR. Diagnosis and treatment of traumatic anterior instability of the shoulder. Clin Orthop Relat Res. 1993;291:75–84. PubMed.PubMed Zarins B, McMahon MS, Rowe CR. Diagnosis and treatment of traumatic anterior instability of the shoulder. Clin Orthop Relat Res. 1993;291:75–84. PubMed.PubMed
14.
go back to reference Nobuhara K, Ikeda H. Rotator interval lesion. Clin Orthop Relat Res. 1987;223:44–50. PubMed.PubMed Nobuhara K, Ikeda H. Rotator interval lesion. Clin Orthop Relat Res. 1987;223:44–50. PubMed.PubMed
15.
go back to reference Field LD, Warren RF, O’Brien SJ, Altchek DW, Wickiewicz TL. Isolated closure of rotator interval defects for shoulder instability. Am J Sports Med. 1995;23(5):557–63. PubMed.PubMedCrossRef Field LD, Warren RF, O’Brien SJ, Altchek DW, Wickiewicz TL. Isolated closure of rotator interval defects for shoulder instability. Am J Sports Med. 1995;23(5):557–63. PubMed.PubMedCrossRef
16.
go back to reference Le Huec JC, Schaeverbeke T, Moinard M, Kind M, Diard F, Dehais J, et al. Traumatic tear of the rotator interval. J Shoulder Elbow Surg. 1996;5(1):41–6. PubMed.PubMedCrossRef Le Huec JC, Schaeverbeke T, Moinard M, Kind M, Diard F, Dehais J, et al. Traumatic tear of the rotator interval. J Shoulder Elbow Surg. 1996;5(1):41–6. PubMed.PubMedCrossRef
17.
go back to reference Walch G, Nove-Josserand L, Levigne C, Renaud E. Tears of the supraspinatus tendon associated with “hidden” lesions of the rotator interval. J Shoulder Elbow Surg. 1994;3(6):353–60. PubMed.PubMedCrossRef Walch G, Nove-Josserand L, Levigne C, Renaud E. Tears of the supraspinatus tendon associated with “hidden” lesions of the rotator interval. J Shoulder Elbow Surg. 1994;3(6):353–60. PubMed.PubMedCrossRef
18.
go back to reference Chechik O, Maman E, Dolkart O, Khashan M, Shabtai L, Mozes G. Arthroscopic rotator interval closure in shoulder instability repair: a retrospective study. J Shoulder Elbow Surg. 2010;19(7):1056–62. PubMed.PubMedCrossRef Chechik O, Maman E, Dolkart O, Khashan M, Shabtai L, Mozes G. Arthroscopic rotator interval closure in shoulder instability repair: a retrospective study. J Shoulder Elbow Surg. 2010;19(7):1056–62. PubMed.PubMedCrossRef
19.
go back to reference Shafer BL, Mihata T, McGarry MH, Tibone JE, Lee TQ. Effects of capsular plication and rotator interval closure in simulated multidirectional shoulder instability. J Bone Joint Surg Am. 2008;90(1):136–44. PubMed.PubMedCrossRef Shafer BL, Mihata T, McGarry MH, Tibone JE, Lee TQ. Effects of capsular plication and rotator interval closure in simulated multidirectional shoulder instability. J Bone Joint Surg Am. 2008;90(1):136–44. PubMed.PubMedCrossRef
20.
go back to reference Chiang ER, Wang JP, Wang ST, Ma HL, Liu CL, Chen TH. Arthroscopic posteroinferior capsular plication and rotator interval closure after Bankart repair in patients with traumatic anterior glenohumeral instability-A minimum follow-up of 5 years. Injury. 2010;41(10):1075–8. PubMed.PubMedCrossRef Chiang ER, Wang JP, Wang ST, Ma HL, Liu CL, Chen TH. Arthroscopic posteroinferior capsular plication and rotator interval closure after Bankart repair in patients with traumatic anterior glenohumeral instability-A minimum follow-up of 5 years. Injury. 2010;41(10):1075–8. PubMed.PubMedCrossRef
21.
go back to reference Provencher MT, Mologne TS, Hongo M, Zhao K, Tasto JP, An KN. Arthroscopic versus open rotator interval closure: biomechanical evaluation of stability and motion. Arthroscopy. 2007;23(6):583–92. PubMed.PubMedCrossRef Provencher MT, Mologne TS, Hongo M, Zhao K, Tasto JP, An KN. Arthroscopic versus open rotator interval closure: biomechanical evaluation of stability and motion. Arthroscopy. 2007;23(6):583–92. PubMed.PubMedCrossRef
22.
go back to reference Blasier RB, Guldberg RE, Rothman ED. Anterior shoulder stability: Contributions of rotator cuff forces and the capsular ligaments in a cadaver model. J Shoulder Elbow Surg. 1992;1(3):140–50. PubMed.PubMedCrossRef Blasier RB, Guldberg RE, Rothman ED. Anterior shoulder stability: Contributions of rotator cuff forces and the capsular ligaments in a cadaver model. J Shoulder Elbow Surg. 1992;1(3):140–50. PubMed.PubMedCrossRef
23.
go back to reference Wolf RS, Zheng N, Iero J, Weichel D. The effects of thermal capsulorrhaphy and rotator interval closure on multidirectional laxity in the glenohumeral joint: a cadaveric biomechanical study. Arthroscopy. 2004;20(10):1044–9. PubMed.PubMedCrossRef Wolf RS, Zheng N, Iero J, Weichel D. The effects of thermal capsulorrhaphy and rotator interval closure on multidirectional laxity in the glenohumeral joint: a cadaveric biomechanical study. Arthroscopy. 2004;20(10):1044–9. PubMed.PubMedCrossRef
24.
go back to reference Kedgley AE, Mackenzie GA, Ferreira LM, Drosdowech DS, King GJ, Faber KJ, et al. Humeral head translation decreases with muscle loading. J Shoulder Elbow Surg. 2008;17(1):132–8. PubMed.PubMedCrossRef Kedgley AE, Mackenzie GA, Ferreira LM, Drosdowech DS, King GJ, Faber KJ, et al. Humeral head translation decreases with muscle loading. J Shoulder Elbow Surg. 2008;17(1):132–8. PubMed.PubMedCrossRef
25.
go back to reference Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21(2):226–37. PubMed Epub 2005/01/11. eng.PubMedCrossRef Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21(2):226–37. PubMed Epub 2005/01/11. eng.PubMedCrossRef
26.
go back to reference Bergmann G, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, et al. In vivo gleno-humeral joint loads during forward flexion and abduction. J Biomech. 2011;44(8):1543–52. PubMed.PubMedCrossRef Bergmann G, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, et al. In vivo gleno-humeral joint loads during forward flexion and abduction. J Biomech. 2011;44(8):1543–52. PubMed.PubMedCrossRef
Metadata
Title
The effect of the rotator interval on glenohumeral kinematics during abduction
Authors
Babak Haghpanah
Kempland C. Walley
Andreas Hingsammer
Ethan R. Harlow
Ramin Oftadeh
Ashkan Vaziri
Arun J. Ramappa
Joseph P. DeAngelis
Ara Nazarian
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-0898-x

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue