Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

Influence of disruption of the acromioclavicular and coracoclavicular ligaments on glenohumeral motion: a kinematic evaluation

Authors: Kempland C. Walley, Babak Haghpanah, Andreas Hingsammer, Ethan R. Harlow, Ashkan Vaziri, Joseph P. DeAngelis, Ara Nazarian, Arun J. Ramappa

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

Changes to the integrity of the acromioclavicular (AC) joint impact scapulothoracic and clavicular kinematics. AC ligaments provide anterior-posterior stability, while the coracoclavicular (CC) ligaments provide superior-inferior stability and a restraint to scapular internal rotation. The purpose of this cadaveric study was to describe the effect of sequential AC and CC sectioning on glenohumeral (GH) kinematics during abduction (ABD) of the arm. We hypothesized that complete AC ligament insult would result in altered GH translation in the anterior-posterior plane during abduction, while subsequent sectioning of both CC ligaments would result in an increasing inferior shift in GH translation.

Methods

Six cadaveric shoulders were studied to evaluate the impact of sequential sectioning of AC and CC ligaments on GH kinematics throughout an abduction motion in the coronal plane. Following an examination of the baseline, uninjured kinematics, the AC ligaments were then sectioned sequentially: (1) Anterior, (2) Inferior, (3) Posterior, and (4) Superior. Continued sectioning of CC ligamentous structures followed: the (5) trapezoid and then the (6) conoid ligaments. For each group, the GH translation and the area under the curve (AUC) were measured during abduction using an intact cadaveric shoulder. Total translation was calculated for each condition between ABD 30° and ABD 150° using the distance formula, and a univariate analysis was used to compare total translation for each axis during the different conditions.

Results

GH kinematics were not altered following sequential resection of the AC ligaments. Disruption of the trapezoid resulted in significant anterior and lateral displacement of the center of GH rotation. Sectioning the conoid ligament further increased the inferior shift in GH displacement.

Conclusion

A combined injury of the AC and CC ligaments significantly alters GH kinematics during abduction. Type III AC separations, result in a significant change in the shoulder’s motion and may warrant surgical reconstruction to restore normal function.
Literature
1.
go back to reference Oki S, Matsumura N, Iwamoto W, Ikegami H, Kiriyama Y, Nakamura T, Toyama Y, Nagura T. The function of the acromioclavicular and coracoclavicular ligaments in shoulder motion: a whole-cadaver study. Am J Sports Med. 2012;40:2617–26.CrossRefPubMed Oki S, Matsumura N, Iwamoto W, Ikegami H, Kiriyama Y, Nakamura T, Toyama Y, Nagura T. The function of the acromioclavicular and coracoclavicular ligaments in shoulder motion: a whole-cadaver study. Am J Sports Med. 2012;40:2617–26.CrossRefPubMed
2.
go back to reference Li H, Wang C, Wang J, Wu K, Hang D. Restoration of horizontal stability in complete acromioclavicular joint separations: surgical technique and preliminary results. Eur J Med Res. 2013;18:42.CrossRefPubMedPubMedCentral Li H, Wang C, Wang J, Wu K, Hang D. Restoration of horizontal stability in complete acromioclavicular joint separations: surgical technique and preliminary results. Eur J Med Res. 2013;18:42.CrossRefPubMedPubMedCentral
3.
go back to reference Rawes ML, Dias JJ. Long-term results of conservative treatment for acromioclavicular dislocation. J Bone Joint Surg Br. 1996;78:410–2.PubMed Rawes ML, Dias JJ. Long-term results of conservative treatment for acromioclavicular dislocation. J Bone Joint Surg Br. 1996;78:410–2.PubMed
4.
go back to reference Cox JS. The fate of the acromioclavicular joint in athletic injuries. Am J Sports Med. 1981;9:50–3.CrossRefPubMed Cox JS. The fate of the acromioclavicular joint in athletic injuries. Am J Sports Med. 1981;9:50–3.CrossRefPubMed
5.
go back to reference Bergfeld JA, Andrish JT, Clancy WG. Evaluation of the acromioclavicular joint following first- and second-degree sprains. Am J Sports Med. 1978;6:153–9.CrossRefPubMed Bergfeld JA, Andrish JT, Clancy WG. Evaluation of the acromioclavicular joint following first- and second-degree sprains. Am J Sports Med. 1978;6:153–9.CrossRefPubMed
6.
go back to reference Gumina S, Carbone S, Postacchini F. Scapular dyskinesis and SICK scapula syndrome in patients with chronic type III acromioclavicular dislocation. Arthroscopy. 2009;25:40–5.CrossRefPubMed Gumina S, Carbone S, Postacchini F. Scapular dyskinesis and SICK scapula syndrome in patients with chronic type III acromioclavicular dislocation. Arthroscopy. 2009;25:40–5.CrossRefPubMed
7.
go back to reference Sahara W, Sugamoto K, Murai M, Yoshikawa H. Three-dimensional clavicular and acromioclavicular rotations during arm abduction using vertically open MRI. J Orthop Res. 2007;25:1243–9.CrossRefPubMed Sahara W, Sugamoto K, Murai M, Yoshikawa H. Three-dimensional clavicular and acromioclavicular rotations during arm abduction using vertically open MRI. J Orthop Res. 2007;25:1243–9.CrossRefPubMed
8.
go back to reference Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability and impingement syndrome. A study using Moire topographic analysis. Clin Orthop Relat Res. 1992:(285):191–199. Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability and impingement syndrome. A study using Moire topographic analysis. Clin Orthop Relat Res. 1992:(285):191–199.
9.
go back to reference Ozaki J. Glenohumeral movements of the involuntary inferior and multidirectional instability. Clin Orthop Relat Res. 1989:(238):107–111. Ozaki J. Glenohumeral movements of the involuntary inferior and multidirectional instability. Clin Orthop Relat Res. 1989:(238):107–111.
10.
go back to reference Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999;29:574–6.CrossRefPubMed Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999;29:574–6.CrossRefPubMed
11.
go back to reference Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80:276–91.PubMed Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80:276–91.PubMed
12.
go back to reference Endo K, Ikata T, Katoh S, Takeda Y. Radiographic assessment of scapular rotational tilt in chronic shoulder impingement syndrome. J Orthop Sci. 2001;6:3–10.CrossRefPubMed Endo K, Ikata T, Katoh S, Takeda Y. Radiographic assessment of scapular rotational tilt in chronic shoulder impingement syndrome. J Orthop Sci. 2001;6:3–10.CrossRefPubMed
13.
go back to reference Klimkiewicz JJ, Williams GR, Sher JS, Karduna A, Des Jardins J, Iannotti JP. The acromioclavicular capsule as a restraint to posterior translation of the clavicle: a biomechanical analysis. J Shoulder Elbow Surg. 1999;8:119–24.CrossRefPubMed Klimkiewicz JJ, Williams GR, Sher JS, Karduna A, Des Jardins J, Iannotti JP. The acromioclavicular capsule as a restraint to posterior translation of the clavicle: a biomechanical analysis. J Shoulder Elbow Surg. 1999;8:119–24.CrossRefPubMed
14.
go back to reference Fukuda K, Craig EV, An KN, Cofield RH, Chao EY. Biomechanical study of the ligamentous system of the acromioclavicular joint. J Bone Joint Surg Am. 1986;68:434–40.CrossRefPubMed Fukuda K, Craig EV, An KN, Cofield RH, Chao EY. Biomechanical study of the ligamentous system of the acromioclavicular joint. J Bone Joint Surg Am. 1986;68:434–40.CrossRefPubMed
15.
go back to reference Debski RE, Parsons 4th IM, Woo SL, Fu FH. Effect of capsular injury on acromioclavicular joint mechanics. J Bone Joint Surg Am. 2001;83-A:1344–51.CrossRefPubMed Debski RE, Parsons 4th IM, Woo SL, Fu FH. Effect of capsular injury on acromioclavicular joint mechanics. J Bone Joint Surg Am. 2001;83-A:1344–51.CrossRefPubMed
16.
go back to reference Rockwood C, Williams GR, Young D. Disorders of the acromioclavicular joint. Rockwood Greens Fract Adults. 1996;2(Ed 4):1341–3. Rockwood C, Williams GR, Young D. Disorders of the acromioclavicular joint. Rockwood Greens Fract Adults. 1996;2(Ed 4):1341–3.
17.
go back to reference Lee KW, Debski RE, Chen CH, Woo SL, Fu FH. Functional evaluation of the ligaments at the acromioclavicular joint during anteroposterior and superoinferior translation. Am J Sports Med. 1997;25:858–62.CrossRefPubMed Lee KW, Debski RE, Chen CH, Woo SL, Fu FH. Functional evaluation of the ligaments at the acromioclavicular joint during anteroposterior and superoinferior translation. Am J Sports Med. 1997;25:858–62.CrossRefPubMed
18.
go back to reference Karduna AR, Williams GR, Williams JL, Iannotti JP. Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry. J Orthop Res. 1996;14:986–93.CrossRefPubMed Karduna AR, Williams GR, Williams JL, Iannotti JP. Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry. J Orthop Res. 1996;14:986–93.CrossRefPubMed
19.
go back to reference Mihata T, McGarry MH, Kahn T, Goldberg I, Neo M, Lee TQ: Biomechanical Effect of Thickness and Tension of Fascia Lata Graft on Glenohumeral Stability for Superior Capsule Reconstruction in Irreparable Supraspinatus Tears. Arthroscopy. 2015;32(3):418-426. Mihata T, McGarry MH, Kahn T, Goldberg I, Neo M, Lee TQ: Biomechanical Effect of Thickness and Tension of Fascia Lata Graft on Glenohumeral Stability for Superior Capsule Reconstruction in Irreparable Supraspinatus Tears. Arthroscopy. 2015;32(3):418-426.
20.
go back to reference Mihata T, McGarry MH, Kahn T, Goldberg I, Neo M, Lee TQ. Biomechanical Effects of Acromioplasty on Superior Capsule Reconstruction for Irreparable Supraspinatus Tendon Tears. Am J Sports Med. 2016;44(1):191-197. Mihata T, McGarry MH, Kahn T, Goldberg I, Neo M, Lee TQ. Biomechanical Effects of Acromioplasty on Superior Capsule Reconstruction for Irreparable Supraspinatus Tendon Tears. Am J Sports Med. 2016;44(1):191-197.
21.
go back to reference Omi R, Hooke AW, Zhao KD, Matsuhashi T, Goto A, Yamamoto N, Sperling JW, Steinmann SP, Itoi E, An K-N. The effect of the remplissage procedure on shoulder range of motion: a cadaveric study. Arthroscopy. 2014;30:178–87.CrossRefPubMed Omi R, Hooke AW, Zhao KD, Matsuhashi T, Goto A, Yamamoto N, Sperling JW, Steinmann SP, Itoi E, An K-N. The effect of the remplissage procedure on shoulder range of motion: a cadaveric study. Arthroscopy. 2014;30:178–87.CrossRefPubMed
22.
go back to reference Omid R, Heckmann N, Wang L, McGarry MH, Vangsness CTJ, Lee TQ. Biomechanical comparison between the trapezius transfer and latissimus transfer for irreparable posterosuperior rotator cuff tears. J Shoulder Elbow Surg. 2015;24:1635–43.CrossRefPubMed Omid R, Heckmann N, Wang L, McGarry MH, Vangsness CTJ, Lee TQ. Biomechanical comparison between the trapezius transfer and latissimus transfer for irreparable posterosuperior rotator cuff tears. J Shoulder Elbow Surg. 2015;24:1635–43.CrossRefPubMed
23.
go back to reference Yamamoto N, Itoi E, Abe H, Minagawa H, Seki N, Shimada Y, Okada K. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg. 2007;16:649–56.CrossRefPubMed Yamamoto N, Itoi E, Abe H, Minagawa H, Seki N, Shimada Y, Okada K. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg. 2007;16:649–56.CrossRefPubMed
24.
go back to reference Entezari V, Trechsel BL, Dow WA, Stanton SK, Rosso C, Muller A, McKenzie B, Vartanians V, Cereatti A, Della Croce U, Deangelis JP, Ramappa AJ, Nazarian A. Design and manufacture of a novel system to simulate the biomechanics of basic and pitching shoulder motion. Bone Joint Res. 2012;1:78–85.CrossRefPubMedPubMedCentral Entezari V, Trechsel BL, Dow WA, Stanton SK, Rosso C, Muller A, McKenzie B, Vartanians V, Cereatti A, Della Croce U, Deangelis JP, Ramappa AJ, Nazarian A. Design and manufacture of a novel system to simulate the biomechanics of basic and pitching shoulder motion. Bone Joint Res. 2012;1:78–85.CrossRefPubMedPubMedCentral
25.
go back to reference Mueller AM, Entezari V, Rosso C, McKenzie B, Hasebrock A, Cereatti A, Della Croce U, Deangelis JP, Nazarian A, Ramappa AJ. The effect of simulated scapular winging on glenohumeral joint translations. J Shoulder Elbow Surg. 2013;22:986–92.CrossRefPubMed Mueller AM, Entezari V, Rosso C, McKenzie B, Hasebrock A, Cereatti A, Della Croce U, Deangelis JP, Nazarian A, Ramappa AJ. The effect of simulated scapular winging on glenohumeral joint translations. J Shoulder Elbow Surg. 2013;22:986–92.CrossRefPubMed
26.
go back to reference Mueller AM, Rosso C, Entezari V, McKenzie B, Hasebroock A, Cereatti A, Della Croce U, Nazarian A, Ramappa AJ, DeAngelis JP. The effect of supraspinatus tears on glenohumeral translations in passive pitching motion. Am J Sports Med. 2014;42:2455–62.CrossRefPubMed Mueller AM, Rosso C, Entezari V, McKenzie B, Hasebroock A, Cereatti A, Della Croce U, Nazarian A, Ramappa AJ, DeAngelis JP. The effect of supraspinatus tears on glenohumeral translations in passive pitching motion. Am J Sports Med. 2014;42:2455–62.CrossRefPubMed
27.
go back to reference Rosso C, Muller AM, Entezari V, Dow WA, McKenzie B, Stanton SK, Li D, Cereatti A, Ramappa AJ, DeAngelis JP, Nazarian A, Della Croce U. Preliminary evaluation of a robotic apparatus for the analysis of passive glenohumeral joint kinematics. J Orthop Surg Res. 2013;8:24.CrossRefPubMedPubMedCentral Rosso C, Muller AM, Entezari V, Dow WA, McKenzie B, Stanton SK, Li D, Cereatti A, Ramappa AJ, DeAngelis JP, Nazarian A, Della Croce U. Preliminary evaluation of a robotic apparatus for the analysis of passive glenohumeral joint kinematics. J Orthop Surg Res. 2013;8:24.CrossRefPubMedPubMedCentral
28.
go back to reference Rosso C, Mueller AM, McKenzie B, Entezari V, Cereatt ADCU, et al. Bulk effect of the deltoid muscle on the glenohumeral joint. J Exp Orthop. 2014;1:9.CrossRef Rosso C, Mueller AM, McKenzie B, Entezari V, Cereatt ADCU, et al. Bulk effect of the deltoid muscle on the glenohumeral joint. J Exp Orthop. 2014;1:9.CrossRef
29.
go back to reference Wu G, van der Helm FCT, Veeger HEJD, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38:981–92.CrossRefPubMed Wu G, van der Helm FCT, Veeger HEJD, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38:981–92.CrossRefPubMed
30.
go back to reference Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech. 1998;31:93–6.CrossRefPubMed Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech. 1998;31:93–6.CrossRefPubMed
31.
go back to reference Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. 2009;91:378–89.CrossRefPubMedPubMedCentral Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. 2009;91:378–89.CrossRefPubMedPubMedCentral
33.
go back to reference Cadenent F. The treatment of dislocations and fractures of the outer end of the clavicle. Int Clin. 1917;1:24. Cadenent F. The treatment of dislocations and fractures of the outer end of the clavicle. Int Clin. 1917;1:24.
34.
go back to reference Inman VT, Saunders JB, Abbott LC. Observations of the function of the shoulder joint. Clin Orthop Relat Res. 1944;1996:3–12. Inman VT, Saunders JB, Abbott LC. Observations of the function of the shoulder joint. Clin Orthop Relat Res. 1944;1996:3–12.
35.
go back to reference Urist M. Ccomplete dislocation of the acromioclavicular joint. J Bone Joint Surg Am. 1963;45:1750–3.CrossRefPubMed Urist M. Ccomplete dislocation of the acromioclavicular joint. J Bone Joint Surg Am. 1963;45:1750–3.CrossRefPubMed
36.
go back to reference Skjeldal S, Lundblad R, Dullerud R. Coracoid process transfer for acromioclavicular dislocation. Acta Orthop Scand. 1988;59:180–2.CrossRefPubMed Skjeldal S, Lundblad R, Dullerud R. Coracoid process transfer for acromioclavicular dislocation. Acta Orthop Scand. 1988;59:180–2.CrossRefPubMed
37.
go back to reference Branch TP, Burdette HL, Shahriari AS, Carter 2nd FM, Hutton WC. The role of the acromioclavicular ligaments and the effect of distal clavicle resection. Am J Sports Med. 1996;24:293–7.CrossRefPubMed Branch TP, Burdette HL, Shahriari AS, Carter 2nd FM, Hutton WC. The role of the acromioclavicular ligaments and the effect of distal clavicle resection. Am J Sports Med. 1996;24:293–7.CrossRefPubMed
38.
go back to reference Flatow EL. The biomechanics of the acromioclavicular, sternoclavicular, and scapulothoracic joints. Instr Course Lect. 1993;42:237–45.PubMed Flatow EL. The biomechanics of the acromioclavicular, sternoclavicular, and scapulothoracic joints. Instr Course Lect. 1993;42:237–45.PubMed
39.
go back to reference Flatow EL, Cordasco FA, Bigliani LU. Arthroscopic resection of the outer end of the clavicle from a superior approach: a critical, quantitative, radiographic assessment of bone removal. Arthroscopy. 1992;8:55–64.CrossRefPubMed Flatow EL, Cordasco FA, Bigliani LU. Arthroscopic resection of the outer end of the clavicle from a superior approach: a critical, quantitative, radiographic assessment of bone removal. Arthroscopy. 1992;8:55–64.CrossRefPubMed
40.
go back to reference Palma D. Surgery of the shoulder. Philadelphia: Lippincott; 1983. p. 512. Palma D. Surgery of the shoulder. Philadelphia: Lippincott; 1983. p. 512.
41.
42.
go back to reference Neviaser RJ. Injuries to the clavicle and acromioclavicular joint. Orthop Clin North Am. 1987;18:433–8.PubMed Neviaser RJ. Injuries to the clavicle and acromioclavicular joint. Orthop Clin North Am. 1987;18:433–8.PubMed
43.
go back to reference Kedgley AE, Mackenzie GA, Ferreira LM, Drosdowech DS, King GJW, Faber KJ, Johnson JA. Humeral head translation decreases with muscle loading. J Shoulder Elbow Surg. 2008;17:132–8.CrossRefPubMed Kedgley AE, Mackenzie GA, Ferreira LM, Drosdowech DS, King GJW, Faber KJ, Johnson JA. Humeral head translation decreases with muscle loading. J Shoulder Elbow Surg. 2008;17:132–8.CrossRefPubMed
44.
go back to reference Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21:226–37.CrossRefPubMed Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21:226–37.CrossRefPubMed
45.
go back to reference Bergmann G, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Westerhoff P. In vivo gleno-humeral joint loads during forward flexion and abduction. J Biomech. 2011;44:1543–52.CrossRefPubMed Bergmann G, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Westerhoff P. In vivo gleno-humeral joint loads during forward flexion and abduction. J Biomech. 2011;44:1543–52.CrossRefPubMed
46.
go back to reference Motzkin NE, Itoi E, Morrey BF, An KN. Contribution of passive bulk tissues and deltoid to static inferior glenohumeral stability. J Shoulder Elbow Surg. 1994;3:313–9.CrossRefPubMed Motzkin NE, Itoi E, Morrey BF, An KN. Contribution of passive bulk tissues and deltoid to static inferior glenohumeral stability. J Shoulder Elbow Surg. 1994;3:313–9.CrossRefPubMed
Metadata
Title
Influence of disruption of the acromioclavicular and coracoclavicular ligaments on glenohumeral motion: a kinematic evaluation
Authors
Kempland C. Walley
Babak Haghpanah
Andreas Hingsammer
Ethan R. Harlow
Ashkan Vaziri
Joseph P. DeAngelis
Ara Nazarian
Arun J. Ramappa
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-1330-2

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue