Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study

Authors: Julie A. Pasco, Kara L. Holloway, Sharon L. Brennan-Olsen, David J. Moloney, Mark A. Kotowicz

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26–97 years.

Methods

This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition.

Results

Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass.

Conclusions

There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.
Literature
1.
go back to reference Ebeling PR, Daly RM, Kerr DA, Kimlin MG. An evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust. 2013;198:90–1.CrossRefPubMed Ebeling PR, Daly RM, Kerr DA, Kimlin MG. An evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust. 2013;198:90–1.CrossRefPubMed
2.
go back to reference Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–6.CrossRefPubMed Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–6.CrossRefPubMed
4.
go back to reference Hamrick MW, McNeil PL, Patterson SL. Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact. 2010;10:64–70.PubMedPubMedCentral Hamrick MW, McNeil PL, Patterson SL. Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact. 2010;10:64–70.PubMedPubMedCentral
5.
go back to reference Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab. 2010;28:251–67.CrossRefPubMed Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab. 2010;28:251–67.CrossRefPubMed
6.
go back to reference Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009;43:898–908.CrossRefPubMed Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009;43:898–908.CrossRefPubMed
7.
go back to reference Pasco JA, Nicholson GC, Kotowicz MA. Cohort profile: Geelong Osteoporosis Study. Int J Epidemiol. 2012;41:1565–75.CrossRefPubMed Pasco JA, Nicholson GC, Kotowicz MA. Cohort profile: Geelong Osteoporosis Study. Int J Epidemiol. 2012;41:1565–75.CrossRefPubMed
8.
go back to reference Marino M, Nicholas JA, Gleim GW, Rosenthal P, Nicholas SJ. The efficacy of manual assessment of muscle strength using a new device. Am J Sports Med. 1982;10:360–4.CrossRefPubMed Marino M, Nicholas JA, Gleim GW, Rosenthal P, Nicholas SJ. The efficacy of manual assessment of muscle strength using a new device. Am J Sports Med. 1982;10:360–4.CrossRefPubMed
9.
go back to reference Mazess R, Barden H. Bone density of the spine and femur in adult white females. Cacif Tissue Int. 1999;65:91–9.CrossRef Mazess R, Barden H. Bone density of the spine and femur in adult white females. Cacif Tissue Int. 1999;65:91–9.CrossRef
10.
go back to reference Henry MJ, Pasco JA, Pocock NA, Nicholson GC, Kotowicz MA. Reference ranges for bone densitometers adopted Australia-wide: Geelong Osteoporosis Study. Australas Radiol. 2004;48:473–5.CrossRefPubMed Henry MJ, Pasco JA, Pocock NA, Nicholson GC, Kotowicz MA. Reference ranges for bone densitometers adopted Australia-wide: Geelong Osteoporosis Study. Australas Radiol. 2004;48:473–5.CrossRefPubMed
11.
go back to reference Chen Z, Wang Z, Lohman T, Heymsfield SB, Outwater E, Nicholas JS, et al. Dual-energy x-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women. J Nutr. 2007;137:2775–80.PubMed Chen Z, Wang Z, Lohman T, Heymsfield SB, Outwater E, Nicholas JS, et al. Dual-energy x-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women. J Nutr. 2007;137:2775–80.PubMed
12.
go back to reference Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong Osteoporosis Study. Calcif Tissue Int. 2014;94:363–72.CrossRefPubMed Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong Osteoporosis Study. Calcif Tissue Int. 2014;94:363–72.CrossRefPubMed
13.
go back to reference Cassidy L, Bandela S, Wooten C, Jennifer C, Tubbs RS, Loukas M. Friedrich Trendelenburg: historical background and significant medical contributions. Clin Anat. 2014;27:815–20.CrossRefPubMed Cassidy L, Bandela S, Wooten C, Jennifer C, Tubbs RS, Loukas M. Friedrich Trendelenburg: historical background and significant medical contributions. Clin Anat. 2014;27:815–20.CrossRefPubMed
14.
go back to reference Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13:1805–13.CrossRefPubMed Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13:1805–13.CrossRefPubMed
15.
go back to reference Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA. 1994;272:1909–14.CrossRefPubMed Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA. 1994;272:1909–14.CrossRefPubMed
16.
go back to reference Bayramoglu M, Sozay S, Karatas M, Kilinc S. Relationships between muscle strength and bone mineral density of three body regions in sedentary postmenopausal women. Rheumatol Int. 2005;25:513–7.CrossRefPubMed Bayramoglu M, Sozay S, Karatas M, Kilinc S. Relationships between muscle strength and bone mineral density of three body regions in sedentary postmenopausal women. Rheumatol Int. 2005;25:513–7.CrossRefPubMed
17.
go back to reference Verschueren S, Gielen E, O’Neill TW, Pye SR, Adams JE, Ward KA, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int. 2013;24:87–98.CrossRefPubMed Verschueren S, Gielen E, O’Neill TW, Pye SR, Adams JE, Ward KA, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int. 2013;24:87–98.CrossRefPubMed
18.
go back to reference Kim JH, Choi SH, Lim S, Lim JY, Kim KW, Park KS, et al. Thigh muscle attenuation measured by computed tomography was associated with the risk of low bone density in community-dwelling elderly population. Clin Endocrinol (Oxf). 2013;78:512–7.CrossRef Kim JH, Choi SH, Lim S, Lim JY, Kim KW, Park KS, et al. Thigh muscle attenuation measured by computed tomography was associated with the risk of low bone density in community-dwelling elderly population. Clin Endocrinol (Oxf). 2013;78:512–7.CrossRef
19.
go back to reference Rikkonen T, Sirola J, Salovaara K, Tuppurainen M, Jurvelin JS, Honkanen R, et al. Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int. 2012;91:131–8.CrossRefPubMed Rikkonen T, Sirola J, Salovaara K, Tuppurainen M, Jurvelin JS, Honkanen R, et al. Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int. 2012;91:131–8.CrossRefPubMed
20.
go back to reference Flicker L, Hopper JL, Larkins RG, Lichtenstein M, Buirski G, Wark JD. Nandrolone decanoate and intranasal calcitonin as therapy in established osteoporosis. Osteoporos Int. 1997;7:29–35.CrossRefPubMed Flicker L, Hopper JL, Larkins RG, Lichtenstein M, Buirski G, Wark JD. Nandrolone decanoate and intranasal calcitonin as therapy in established osteoporosis. Osteoporos Int. 1997;7:29–35.CrossRefPubMed
21.
go back to reference Frisoli Jr A, Chaves PH, Pinheiro MM, Szejnfeld VL. The effect of nandrolone decanoate on bone mineral density, muscle mass, and hemoglobin levels in elderly women with osteoporosis: a double-blind, randomized, placebo-controlled clinical trial. J Gerontol A Biol Sci Med Sci. 2005;60:648–53.CrossRefPubMed Frisoli Jr A, Chaves PH, Pinheiro MM, Szejnfeld VL. The effect of nandrolone decanoate on bone mineral density, muscle mass, and hemoglobin levels in elderly women with osteoporosis: a double-blind, randomized, placebo-controlled clinical trial. J Gerontol A Biol Sci Med Sci. 2005;60:648–53.CrossRefPubMed
Metadata
Title
Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study
Authors
Julie A. Pasco
Kara L. Holloway
Sharon L. Brennan-Olsen
David J. Moloney
Mark A. Kotowicz
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0586-2

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue