Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | COVID-19 | Research Article

Elevated glucose level leads to rapid COVID-19 progression and high fatality

Authors: Wenjun Wang, Mingwang Shen, Yusha Tao, Christopher K. Fairley, Qin Zhong, Zongren Li, Hui Chen, Jason J. Ong, Dawei Zhang, Kai Zhang, Ning Xing, Huayuan Guo, Enqiang Qin, Xizhou Guan, Feifei Yang, Sibing Zhang, Lei Zhang, Kunlun He

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Objectives

We aimed to identify high-risk factors for disease progression and fatality for coronavirus disease 2019 (COVID-19) patients.

Methods

We enrolled 2433 COVID-19 patients and used LASSO regression and multivariable cause-specific Cox proportional hazard models to identify the risk factors for disease progression and fatality.

Results

The median time for progression from mild-to-moderate, moderate-to-severe, severe-to-critical, and critical-to-death were 3.0 (interquartile range: 1.8–5.5), 3.0 (1.0–7.0), 3.0 (1.0–8.0), and 6.5 (4.0–16.3) days, respectively. Among 1,758 mild or moderate patients at admission, 474 (27.0%) progressed to a severe or critical stage. Age above 60 years, elevated levels of blood glucose, respiratory rate, fever, chest tightness, c-reaction protein, lactate dehydrogenase, direct bilirubin, and low albumin and lymphocyte count were significant risk factors for progression. Of 675 severe or critical patients at admission, 41 (6.1%) died. Age above 74 years, elevated levels of blood glucose, fibrinogen and creatine kinase-MB, and low plateleta count were significant risk factors for fatality. Patients with elevated blood glucose level were 58% more likely to progress and 3.22 times more likely to die of COVID-19.

Conclusions

Older age, elevated glucose level, and clinical indicators related to systemic inflammatory responses and multiple organ failures, predict both the disease progression and the fatality of COVID-19 patients.
Appendix
Available only for authorised users
Literature
3.
go back to reference Zhang L SM, Ma X, et al. What is required to prevent a second major outbreak of the novel coronavirus COVID-19 upon lifting the metropolitan-wide quarantine of Wuhan city, China: a mathematical modelling study. Social Science Electronic Publishing 2020. Zhang L SM, Ma X, et al. What is required to prevent a second major outbreak of the novel coronavirus COVID-19 upon lifting the metropolitan-wide quarantine of Wuhan city, China: a mathematical modelling study. Social Science Electronic Publishing 2020.
4.
go back to reference Sun YX, Koh V, Marimuthu K, et al. Epidemiological and clinical predictors of COVID-19. Clin Infect Dis. 2020;71:786–92.CrossRef Sun YX, Koh V, Marimuthu K, et al. Epidemiological and clinical predictors of COVID-19. Clin Infect Dis. 2020;71:786–92.CrossRef
5.
go back to reference Lian JS, Jin X, Hao SR, et al. Analysis of epidemiological and clinical features in older patients with Corona Virus Disease 2019 (COVID-19) out of Wuhan. Clin Infect Dis. 2020;71:740–7.CrossRef Lian JS, Jin X, Hao SR, et al. Analysis of epidemiological and clinical features in older patients with Corona Virus Disease 2019 (COVID-19) out of Wuhan. Clin Infect Dis. 2020;71:740–7.CrossRef
6.
go back to reference Cao JL, Tu WJ, Cheng WL, et al. Clinical features and short-term outcomes of 102 patients with corona virus disease 2019 in Wuhan, China. Clin Infect Dis 2020. Cao JL, Tu WJ, Cheng WL, et al. Clinical features and short-term outcomes of 102 patients with corona virus disease 2019 in Wuhan, China. Clin Infect Dis 2020.
7.
go back to reference Martinez-Gomez X, Curran A, Campins M, et al. Multidisciplinary, evidence-based consensus guidelines for human papillomavirus (HPV) vaccination in high-risk populations, Spain, 2016. Euro Surveill. 2019;24(7):1700857.CrossRef Martinez-Gomez X, Curran A, Campins M, et al. Multidisciplinary, evidence-based consensus guidelines for human papillomavirus (HPV) vaccination in high-risk populations, Spain, 2016. Euro Surveill. 2019;24(7):1700857.CrossRef
11.
go back to reference Wynants L, Van Calster B, Bonten MMJ, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ. 2020;369:m1328.CrossRef Wynants L, Van Calster B, Bonten MMJ, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ. 2020;369:m1328.CrossRef
12.
go back to reference Piccininni M, Rohmann J, Foresti L, et al. Use of all cause mortality to quantify the consequences of covid-19 in Nembro, Lombardy: descriptive study. BMJ. 2020;369:m1835.CrossRef Piccininni M, Rohmann J, Foresti L, et al. Use of all cause mortality to quantify the consequences of covid-19 in Nembro, Lombardy: descriptive study. BMJ. 2020;369:m1835.CrossRef
13.
go back to reference Mao B, Liu Y, Chai Y, et al. Assessing risk factors for SARS-CoV-2 infection in patients presenting with symptoms in Shanghai, China: a multicentre, observational cohort study. Lancet Digit Health. 2020;2:e323–30.CrossRef Mao B, Liu Y, Chai Y, et al. Assessing risk factors for SARS-CoV-2 infection in patients presenting with symptoms in Shanghai, China: a multicentre, observational cohort study. Lancet Digit Health. 2020;2:e323–30.CrossRef
14.
go back to reference Ji D, Zhang D, Xu J, et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: the CALL Score. Clin Infect Dis. 2020;71:1393–9.CrossRef Ji D, Zhang D, Xu J, et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: the CALL Score. Clin Infect Dis. 2020;71:1393–9.CrossRef
15.
go back to reference Sahu KK, Siddiqui AD. From Hematologist’s desk: The effect of COVID-19 on the blood system. Am J Hematol. 2020;95(8):E213–5.CrossRef Sahu KK, Siddiqui AD. From Hematologist’s desk: The effect of COVID-19 on the blood system. Am J Hematol. 2020;95(8):E213–5.CrossRef
16.
go back to reference Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Intern Med. 2020;180(7):1–11. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Intern Med. 2020;180(7):1–11.
17.
go back to reference Zhou F, Yu T, Du RH, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–62.CrossRef Zhou F, Yu T, Du RH, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–62.CrossRef
18.
go back to reference Liang WH, Liang HR, Ou LM, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020;180:1081–9.CrossRef Liang WH, Liang HR, Ou LM, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020;180:1081–9.CrossRef
19.
go back to reference Bellou V TI, Evangelou E, et al. Risk factors for adverse clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. medRxvi [preprint] 2020. Bellou V TI, Evangelou E, et al. Risk factors for adverse clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. medRxvi [preprint] 2020.
20.
go back to reference Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chinese Medical Journal 2020; 133(9):1087–95. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chinese Medical Journal 2020; 133(9):1087–95.
21.
go back to reference ICD-10-CM official coding and reporting guidelines. 2020. ICD-10-CM official coding and reporting guidelines. 2020.
22.
go back to reference Simon NFJ, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39(5):1–13.CrossRef Simon NFJ, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39(5):1–13.CrossRef
23.
go back to reference Peduzzi PCJ, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.CrossRef Peduzzi PCJ, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.CrossRef
24.
go back to reference Jewell NP, Lewnard JA, Jewell BL, et al. Predictive Mathematical Models Of The COVID-19 pandemic: underlying principles and value of projections. JAMA. 2020;323(19):1893–4.CrossRef Jewell NP, Lewnard JA, Jewell BL, et al. Predictive Mathematical Models Of The COVID-19 pandemic: underlying principles and value of projections. JAMA. 2020;323(19):1893–4.CrossRef
25.
go back to reference Guan WJNZ, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.CrossRef Guan WJNZ, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.CrossRef
26.
go back to reference Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA. 2020;323(11):1061–9.CrossRef Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA. 2020;323(11):1061–9.CrossRef
27.
go back to reference Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488–94.CrossRef Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488–94.CrossRef
28.
go back to reference Cummings MJBM, Abrams D. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70.CrossRef Cummings MJBM, Abrams D. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70.CrossRef
29.
go back to reference Grasselli G, Zanella A. Critically ill patients with COVID-19 in New York City. The Lancet. 2020;395:1740–1.CrossRef Grasselli G, Zanella A. Critically ill patients with COVID-19 in New York City. The Lancet. 2020;395:1740–1.CrossRef
30.
go back to reference Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76(1):122–4.CrossRef Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76(1):122–4.CrossRef
31.
go back to reference Wang S, Zhou X, Zhang T, Wang Z. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol. 2020;17:314–5.CrossRef Wang S, Zhou X, Zhang T, Wang Z. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol. 2020;17:314–5.CrossRef
32.
go back to reference Qi XL, Liu Y, Wang JT, et al. Clinical course and risk factors for mortality of COVID-19 patients with pre-existing cirrhosis: a multicentre cohort study. Gut. 2021;70:433–6.PubMed Qi XL, Liu Y, Wang JT, et al. Clinical course and risk factors for mortality of COVID-19 patients with pre-existing cirrhosis: a multicentre cohort study. Gut. 2021;70:433–6.PubMed
33.
go back to reference Bode BGV, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813–21.CrossRef Bode BGV, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813–21.CrossRef
34.
go back to reference Sinclair AJ, Abdelhafix AH. Age, frailty and diabetes—triple jeopardy for vulnerability to COVID-19 infection. EClinicalMedicine. 2020;22:100343.CrossRef Sinclair AJ, Abdelhafix AH. Age, frailty and diabetes—triple jeopardy for vulnerability to COVID-19 infection. EClinicalMedicine. 2020;22:100343.CrossRef
35.
go back to reference Ceriello A. Hyperglycemia and the worse prognosis of COVID-19. Why a fast blood glucose control should be mandatory. Diabetes Res Clin Pract. 2020;163:108186.CrossRef Ceriello A. Hyperglycemia and the worse prognosis of COVID-19. Why a fast blood glucose control should be mandatory. Diabetes Res Clin Pract. 2020;163:108186.CrossRef
36.
go back to reference Sierra R, Rello J, Bailen MA, et al. C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome. Intensive Care Med. 2004;30(11):2038–45.CrossRef Sierra R, Rello J, Bailen MA, et al. C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome. Intensive Care Med. 2004;30(11):2038–45.CrossRef
37.
go back to reference Zhang Y, Xiao M, Zhang SL, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382:e38.CrossRef Zhang Y, Xiao M, Zhang SL, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382:e38.CrossRef
38.
go back to reference Milbrandt EB, Reade MC, Lee M, et al. Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. Mol Med. 2009;15(11–12):438–45.CrossRef Milbrandt EB, Reade MC, Lee M, et al. Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. Mol Med. 2009;15(11–12):438–45.CrossRef
39.
go back to reference Wang SH HP, Xiao F. Manifestations of liver injury in 333 hospitalized patients with coronavirus disease 2019. Chin J Dig 2020. Wang SH HP, Xiao F. Manifestations of liver injury in 333 hospitalized patients with coronavirus disease 2019. Chin J Dig 2020.
40.
go back to reference Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb Thrombolysis. 2020:1–6. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb Thrombolysis. 2020:1–6.
Metadata
Title
Elevated glucose level leads to rapid COVID-19 progression and high fatality
Authors
Wenjun Wang
Mingwang Shen
Yusha Tao
Christopher K. Fairley
Qin Zhong
Zongren Li
Hui Chen
Jason J. Ong
Dawei Zhang
Kai Zhang
Ning Xing
Huayuan Guo
Enqiang Qin
Xizhou Guan
Feifei Yang
Sibing Zhang
Lei Zhang
Kunlun He
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
COVID-19
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01413-w

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue