Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Acute Respiratory Distress-Syndrome | Research article

SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure

Authors: Chih-Hao Shen, Jr-Yu Lin, Cheng-Yo Lu, Sung-Sen Yang, Chung-Kan Peng, Kun-Lun Huang

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Hyperoxia downregulates the tight junction (TJ) proteins of the alveolar epithelium and leads to barrier dysfunction. Previous study has showed that STE20/SPS1-related proline/alanine-rich kinase (SPAK) interferes with the intestinal barrier function in mice. The aim of the present study is to explore the association between SPAK and barrier function in the alveolar epithelium after hyperoxic exposure.

Methods

Hyperoxic acute lung injury (HALI) was induced by exposing mice to > 99% oxygen for 64 h. The mice were randomly allotted into four groups comprising two control groups and two hyperoxic groups with and without SPAK knockout. Mouse alveolar MLE-12 cells were cultured in control and hyperoxic conditions with or without SPAK knockdown. Transepithelial electric resistance and transwell monolayer permeability were measured for each group. In-cell western assay was used to screen the possible mechanism of p-SPAK being induced by hyperoxia.

Results

Compared with the control group, SPAK knockout mice had a lower protein level in the bronchoalveolar lavage fluid in HALI, which was correlated with a lower extent of TJ disruption according to transmission electron microscopy. Hyperoxia down-regulated claudin-18 in the alveolar epithelium, which was alleviated in SPAK knockout mice. In MLE-12 cells, hyperoxia up-regulated phosphorylated-SPAK by reactive oxygen species (ROS), which was inhibited by indomethacin. Compared with the control group, SPAK knockdown MLE-12 cells had higher transepithelial electrical resistance and lower transwell monolayer permeability after hyperoxic exposure. The expression of claudin-18 was suppressed by hyperoxia, and down-regulation of SPAK restored the expression of claudin-18. The process of SPAK suppressing the expression of claudin-18 and impairing the barrier function was mediated by p38 mitogen-activated protein kinase (MAPK).

Conclusions

Hyperoxia up-regulates the SPAK-p38 MAPK signal pathway by ROS, which disrupts the TJ of the alveolar epithelium by suppressing the expression of claudin-18. The down-regulation of SPAK attenuates this process and protects the alveolar epithelium against the barrier dysfunction induced by hyperoxia.
Literature
1.
go back to reference Helmerhorst HJF, Roos-Blom M-J, van Westerloo DJ, de Jonge E. Association between arterial hyperoxia and outcome in subsets of critical illness: a systematic review, meta-analysis, and meta-regression of cohort studies*. Crit Care Med. 2015;43(7):1508–19.PubMedCrossRef Helmerhorst HJF, Roos-Blom M-J, van Westerloo DJ, de Jonge E. Association between arterial hyperoxia and outcome in subsets of critical illness: a systematic review, meta-analysis, and meta-regression of cohort studies*. Crit Care Med. 2015;43(7):1508–19.PubMedCrossRef
2.
go back to reference Ni Y-N, Wang Y-M, Liang B-M, Liang Z-A. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19(1):53.PubMedPubMedCentralCrossRef Ni Y-N, Wang Y-M, Liang B-M, Liang Z-A. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19(1):53.PubMedPubMedCentralCrossRef
3.
go back to reference Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radical Biol Med. 2019;142:61–72.CrossRef Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radical Biol Med. 2019;142:61–72.CrossRef
4.
go back to reference Dias-Freitas F, Metelo-Coimbra C, Roncon-Albuquerque R. Molecular mechanisms underlying hyperoxia acute lung injury. Respir Med. 2016;119:23–8.PubMedCrossRef Dias-Freitas F, Metelo-Coimbra C, Roncon-Albuquerque R. Molecular mechanisms underlying hyperoxia acute lung injury. Respir Med. 2016;119:23–8.PubMedCrossRef
5.
go back to reference Porzionato A, Sfriso MM, Mazzatenta A, Macchi V, De Caro R, Di Giulio C. Effects of hyperoxic exposure on signal transduction pathways in the lung. Respir Physiol Neurobiol. 2015;209:106–14.PubMedCrossRef Porzionato A, Sfriso MM, Mazzatenta A, Macchi V, De Caro R, Di Giulio C. Effects of hyperoxic exposure on signal transduction pathways in the lung. Respir Physiol Neurobiol. 2015;209:106–14.PubMedCrossRef
6.
go back to reference Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol. 2010;7(4):239–54.PubMedCrossRef Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol. 2010;7(4):239–54.PubMedCrossRef
8.
9.
go back to reference Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017;469(1):135–47.PubMedCrossRef Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017;469(1):135–47.PubMedCrossRef
10.
go back to reference Blasig IE, Haseloff RF. Tight junctions and tissue barriers. Antioxid Redox Signal. 2011;15(5):1163–6.PubMedCrossRef Blasig IE, Haseloff RF. Tight junctions and tissue barriers. Antioxid Redox Signal. 2011;15(5):1163–6.PubMedCrossRef
11.
go back to reference Van Itallie CM, Anderson JM. Phosphorylation of tight junction transmembrane proteins: many sites, much to do. Tissue Barriers. 2018;6(1):e1382671.PubMedCrossRef Van Itallie CM, Anderson JM. Phosphorylation of tight junction transmembrane proteins: many sites, much to do. Tissue Barriers. 2018;6(1):e1382671.PubMedCrossRef
14.
go back to reference Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Signal. 2011;15(5):1195–219.PubMedCrossRef Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Signal. 2011;15(5):1195–219.PubMedCrossRef
15.
go back to reference Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res. 2016;17(1):50–50.PubMedPubMedCentralCrossRef Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res. 2016;17(1):50–50.PubMedPubMedCentralCrossRef
16.
go back to reference Vyas-Read S, Vance RJ, Wang W, Colvocoresses-Dodds J, Brown LA, Koval M. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatr Pulmonol. 2018;53(1):17–27.PubMedCrossRef Vyas-Read S, Vance RJ, Wang W, Colvocoresses-Dodds J, Brown LA, Koval M. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatr Pulmonol. 2018;53(1):17–27.PubMedCrossRef
17.
go back to reference Al-Shmgani HS, Moate RM, Macnaughton PD, Sneyd JR, Moody AJ. Effects of hyperoxia on the permeability of 16HBE14o-cell monolayers—the protective role of antioxidant vitamins E and C. FEBS J. 2013;280(18):4512–21.PubMedCrossRef Al-Shmgani HS, Moate RM, Macnaughton PD, Sneyd JR, Moody AJ. Effects of hyperoxia on the permeability of 16HBE14o-cell monolayers—the protective role of antioxidant vitamins E and C. FEBS J. 2013;280(18):4512–21.PubMedCrossRef
18.
go back to reference Murillo-de-Ozores AR, Chávez-Canales M, de Los Heros P, Gamba G, Castañeda-Bueno M. Physiological processes modulated by the chloride-sensitive WNK-SPAK/OSR1 kinase signaling pathway and the cation-coupled chloride cotransporters. Front Physiol. 2020;11:585907. Murillo-de-Ozores AR, Chávez-Canales M, de Los Heros P, Gamba G, Castañeda-Bueno M. Physiological processes modulated by the chloride-sensitive WNK-SPAK/OSR1 kinase signaling pathway and the cation-coupled chloride cotransporters. Front Physiol. 2020;11:585907.
19.
go back to reference Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT. WNK kinase signaling in ion homeostasis and human disease. Cell Metab. 2017;25(2):285–99.PubMedCrossRef Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT. WNK kinase signaling in ion homeostasis and human disease. Cell Metab. 2017;25(2):285–99.PubMedCrossRef
20.
go back to reference Lan CC, Peng CK, Tang SE, Lin HJ, Yang SS, Wu CP, Huang KL. Inhibition of Na-K-Cl cotransporter isoform 1 reduces lung injury induced by ischemia-reperfusion. J Thoracic Cardiovasc Surg. 2017;153(1):206–15.CrossRef Lan CC, Peng CK, Tang SE, Lin HJ, Yang SS, Wu CP, Huang KL. Inhibition of Na-K-Cl cotransporter isoform 1 reduces lung injury induced by ischemia-reperfusion. J Thoracic Cardiovasc Surg. 2017;153(1):206–15.CrossRef
21.
go back to reference Lin H-J, Wu C-P, Peng C-K, Lin S-H, Uchida S, Yang S-S, Huang K-L. With-no-lysine kinase 4 mediates alveolar fluid regulation in hyperoxia-induced lung injury*. Crit Care Med. 2015;43(10):e412–9.PubMedCrossRef Lin H-J, Wu C-P, Peng C-K, Lin S-H, Uchida S, Yang S-S, Huang K-L. With-no-lysine kinase 4 mediates alveolar fluid regulation in hyperoxia-induced lung injury*. Crit Care Med. 2015;43(10):e412–9.PubMedCrossRef
23.
go back to reference Yan Y, Laroui H, Ingersoll SA, Ayyadurai S, Charania M, Yang S, Dalmasso G, Obertone TS, Nguyen H, Sitaraman SV, et al. Over-expression of Ste20-related proline/alanine rich kinase (SPAK) exacerbates experimental colitis in mice. J Immunol (Baltimore, Md: 1950). 2011;187(3):1496–505.CrossRef Yan Y, Laroui H, Ingersoll SA, Ayyadurai S, Charania M, Yang S, Dalmasso G, Obertone TS, Nguyen H, Sitaraman SV, et al. Over-expression of Ste20-related proline/alanine rich kinase (SPAK) exacerbates experimental colitis in mice. J Immunol (Baltimore, Md: 1950). 2011;187(3):1496–505.CrossRef
24.
go back to reference Zhang Y, Viennois E, Xiao B, Baker MT, Yang S, Okoro I, Yan Y. Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice. Am J Pathol. 2013;182(5):1617–28.PubMedCrossRef Zhang Y, Viennois E, Xiao B, Baker MT, Yang S, Okoro I, Yan Y. Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice. Am J Pathol. 2013;182(5):1617–28.PubMedCrossRef
25.
go back to reference Yang S-S, Lo Y-F, Wu C-C, Lin S-W, Yeh C-J, Chu P, Sytwu H-K, Uchida S, Sasaki S, Lin S-H. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010;21(11):1868.PubMedPubMedCentralCrossRef Yang S-S, Lo Y-F, Wu C-C, Lin S-W, Yeh C-J, Chu P, Sytwu H-K, Uchida S, Sasaki S, Lin S-H. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010;21(11):1868.PubMedPubMedCentralCrossRef
26.
go back to reference Szulcek R, Bogaard HJ, van Nieuw Amerongen GP. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J Vis Exp. 2014;85:51300. Szulcek R, Bogaard HJ, van Nieuw Amerongen GP. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J Vis Exp. 2014;85:51300.
27.
go back to reference Shen C-H, Lin J-Y, Chang Y-L, Wu S-Y, Peng C-K, Wu C-P, Huang K-L. Inhibition of NKCC1 modulates alveolar fluid clearance and inflammation in ischemia-reperfusion lung injury via TRAF6-mediated pathways. Front Immunol. 2018;9:2049.PubMedPubMedCentralCrossRef Shen C-H, Lin J-Y, Chang Y-L, Wu S-Y, Peng C-K, Wu C-P, Huang K-L. Inhibition of NKCC1 modulates alveolar fluid clearance and inflammation in ischemia-reperfusion lung injury via TRAF6-mediated pathways. Front Immunol. 2018;9:2049.PubMedPubMedCentralCrossRef
28.
go back to reference Johnston AM, Naselli G, Gonez LJ, Martin RM, Harrison LC, DeAizpurua HJ. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway. Oncogene. 2000;19(37):4290–7.PubMedCrossRef Johnston AM, Naselli G, Gonez LJ, Martin RM, Harrison LC, DeAizpurua HJ. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway. Oncogene. 2000;19(37):4290–7.PubMedCrossRef
29.
go back to reference Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W. ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev. 2016;2016:4350965–4350965. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W. ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev. 2016;2016:4350965–4350965.
30.
go back to reference Overgaard CE, Daugherty BL, Mitchell LA, Koval M. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal. 2011;15(5):1179–93.PubMedPubMedCentralCrossRef Overgaard CE, Daugherty BL, Mitchell LA, Koval M. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal. 2011;15(5):1179–93.PubMedPubMedCentralCrossRef
31.
go back to reference Sokolowska M, Quesniaux VFJ, Akdis CA, Chung KF, Ryffel B, Togbe D. Acute respiratory barrier disruption by ozone exposure in mice. Front Immunol. 2019;10:2169.PubMedPubMedCentralCrossRef Sokolowska M, Quesniaux VFJ, Akdis CA, Chung KF, Ryffel B, Togbe D. Acute respiratory barrier disruption by ozone exposure in mice. Front Immunol. 2019;10:2169.PubMedPubMedCentralCrossRef
32.
go back to reference Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Free Radical Biol Med. 2016;100:86–93.CrossRef Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Free Radical Biol Med. 2016;100:86–93.CrossRef
33.
go back to reference Hernanz R, Briones AM, Salaices M, Alonso MJ. New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci (London, England: 1979). 2014;126(2):111–21.CrossRef Hernanz R, Briones AM, Salaices M, Alonso MJ. New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci (London, England: 1979). 2014;126(2):111–21.CrossRef
35.
go back to reference Ohta H, Chiba S, Ebina M, Furuse M, Nukiwa T. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. Am J Physiol-Lung Cell Mol Physiol. 2011;302(2):L193–205.PubMedCrossRef Ohta H, Chiba S, Ebina M, Furuse M, Nukiwa T. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. Am J Physiol-Lung Cell Mol Physiol. 2011;302(2):L193–205.PubMedCrossRef
36.
go back to reference Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol. 2014;51(2):210–22.PubMedPubMedCentral Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol. 2014;51(2):210–22.PubMedPubMedCentral
37.
go back to reference Chen W, Yazicioglu M, Cobb MH. Characterization of OSR1, a member of the mammalian Ste20p/germinal center kinase subfamily. J Biol Chem. 2004;279(12):11129–36.PubMedCrossRef Chen W, Yazicioglu M, Cobb MH. Characterization of OSR1, a member of the mammalian Ste20p/germinal center kinase subfamily. J Biol Chem. 2004;279(12):11129–36.PubMedCrossRef
38.
go back to reference Wang W, Weng J, Yu L, Huang Q, Jiang Y, Guo X. Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulm Med. 2018;18(1):178.PubMedPubMedCentralCrossRef Wang W, Weng J, Yu L, Huang Q, Jiang Y, Guo X. Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulm Med. 2018;18(1):178.PubMedPubMedCentralCrossRef
39.
go back to reference Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets. 2017;21(8):795–804.PubMedPubMedCentralCrossRef Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets. 2017;21(8):795–804.PubMedPubMedCentralCrossRef
40.
go back to reference Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, Tovar-Palacio C, Marfil-Garza BA, Torres N, Bobadilla NA, et al. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Endocrinol Metab. 2017;314(1):E53–65.PubMedCrossRef Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, Tovar-Palacio C, Marfil-Garza BA, Torres N, Bobadilla NA, et al. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Endocrinol Metab. 2017;314(1):E53–65.PubMedCrossRef
41.
go back to reference Zhao H, Nepomuceno R, Gao X, Foley LM, Wang S, Begum G, Zhu W, Pigott VM, Falgoust LM, Kahle KT, et al. Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke. J Cereb Blood Flow Metab. 2017;37(2):550–63.PubMedCrossRef Zhao H, Nepomuceno R, Gao X, Foley LM, Wang S, Begum G, Zhu W, Pigott VM, Falgoust LM, Kahle KT, et al. Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke. J Cereb Blood Flow Metab. 2017;37(2):550–63.PubMedCrossRef
42.
go back to reference Lin T-J, Yang S-S, Hua K-F, Tsai Y-L, Lin S-H, Ka S-M. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-OєB/MAPKs signaling pathway. Free Radical Biol Med. 2016;99:214–24.CrossRef Lin T-J, Yang S-S, Hua K-F, Tsai Y-L, Lin S-H, Ka S-M. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-OєB/MAPKs signaling pathway. Free Radical Biol Med. 2016;99:214–24.CrossRef
43.
go back to reference Shih C-C, Hsu L-P, Liao M-H, Yang S-S, Ho S-T, Wu C-C. Effects of SPAK on vascular reactivity and nitric oxide production in endotoxemic mice. Eur J Pharmacol. 2017;814:248–54.PubMedCrossRef Shih C-C, Hsu L-P, Liao M-H, Yang S-S, Ho S-T, Wu C-C. Effects of SPAK on vascular reactivity and nitric oxide production in endotoxemic mice. Eur J Pharmacol. 2017;814:248–54.PubMedCrossRef
Metadata
Title
SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure
Authors
Chih-Hao Shen
Jr-Yu Lin
Cheng-Yo Lu
Sung-Sen Yang
Chung-Kan Peng
Kun-Lun Huang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01408-7

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue