Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2020

01-12-2020 | Sleep Apnea | Research article

The effect of obstructive sleep apnea syndrome on serum S100B and NSE levels: a systematic review and meta-analysis of observational studies

Authors: Farzad Rezaei, Hooshyar Abbasi, Masoud Sadeghi, Mohammad Moslem Imani

Published in: BMC Pulmonary Medicine | Issue 1/2020

Login to get access

Abstract

Background

Obstructive sleep apnea syndrome (OSAS) is a common disorder that is accompanied by structural brain changes. This meta-analysis aimed to evaluate the effect of OSAS on the serum levels of astrocytic protein (S100B) and neuron-specific enolase (NSE) in observational studies.

Methods

A comprehensive search was performed in the PubMed/Medline, Web of Science, Scopus, ScienceDirect, and Cochrane Library databases to assess the serum level of S100B and/or NSE in patients with OSAS and/or controls. The quality of the study was evaluated by the Newcastle-Ottawa Scale (NOS). A random-effects model was performed using RevMan 5.3 with the mean difference (MD) and 95% confidence intervals (CIs).

Results

Out of 63 studies found in the mentioned databases and one identified by a manual search, nine studies were included and analyzed in this meta-analysis (three cross-sectional and six case-control studies). The analysis showed that the S100B [MD = 53.58 pg/ml, 95%CI: 1.81, 105.35; P = 0.04] and NSE levels [MD = 3.78 ng/ml, 95%CI: 2.07, 5.48; P < 0.0001] were significantly higher in patients than the controls. However, there were no significant differences between the S100B [MD = -28.00 pg/ml, 95%CI: − 79.48, 23.47; P = 0.29] and NSE levels [MD = 0.49 ng/ml, 95%CI: − 0.82, 1.80; P = 0.46].

Conclusions

This meta-analysis found elevated serum S100B and NSE levels in OSAS patients compared to the controls, which suggests that these markers may be used as peripheral indicators of brain damage in OSAS.
Literature
1.
go back to reference Guilleminault C, Quo SD. Sleep-disordered breathing. A view at the beginning of the new millennium. Dent Clin N Am. 2001;45(4):643–56.PubMed Guilleminault C, Quo SD. Sleep-disordered breathing. A view at the beginning of the new millennium. Dent Clin N Am. 2001;45(4):643–56.PubMed
2.
go back to reference Ferini-Strambi L, Fantini ML. Cerebrovascular diseases and sleep-disordered breathing. Clin Exp Hypertens. 2006;28:225–31.CrossRef Ferini-Strambi L, Fantini ML. Cerebrovascular diseases and sleep-disordered breathing. Clin Exp Hypertens. 2006;28:225–31.CrossRef
3.
go back to reference Drager LF, Bortolotto LA, Lorenzi MC, Figueiredo AC, Krieger EM, Lorenzi-Filho G. Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2005;172:613–8.CrossRef Drager LF, Bortolotto LA, Lorenzi MC, Figueiredo AC, Krieger EM, Lorenzi-Filho G. Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2005;172:613–8.CrossRef
4.
go back to reference Macey PM. Is brain injury in obstructive sleep apnea reversible? Sleep. 2012;35:9–10.CrossRef Macey PM. Is brain injury in obstructive sleep apnea reversible? Sleep. 2012;35:9–10.CrossRef
5.
go back to reference O'Donoghue FJ, Wellard RM, Rochford PD, et al. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment. Sleep. 2012;35:41–8.CrossRef O'Donoghue FJ, Wellard RM, Rochford PD, et al. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment. Sleep. 2012;35:41–8.CrossRef
6.
go back to reference Mazzini G, Schaf D, Oliveira AR, Goncalves CA, Souza DO, Portela LV. The ischemic rat heart releases S100B. Life Sci. 2005;77:882–9.CrossRef Mazzini G, Schaf D, Oliveira AR, Goncalves CA, Souza DO, Portela LV. The ischemic rat heart releases S100B. Life Sci. 2005;77:882–9.CrossRef
7.
go back to reference Willoughby KA, Kleindienst A, Müller C, Chen T, Muir JK, Ellis EF. S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem. 2004;91:1284–91.CrossRef Willoughby KA, Kleindienst A, Müller C, Chen T, Muir JK, Ellis EF. S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem. 2004;91:1284–91.CrossRef
8.
go back to reference Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31:2670–7.CrossRef Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31:2670–7.CrossRef
9.
go back to reference Hajduková L, Sobek O, Prchalová D, Bílková Z, Koudelková M, Lukášková J, et al. Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid--a normative study. Biomed Res Int. 2015;2015:379071.CrossRef Hajduková L, Sobek O, Prchalová D, Bílková Z, Koudelková M, Lukášková J, et al. Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid--a normative study. Biomed Res Int. 2015;2015:379071.CrossRef
10.
go back to reference Jordan W, Hagedohm J, Wiltfang J, Laier-Groeneveld G, Tumani H, Rodenbeck A, et al. Biochemical markers of cerebrovascular injury in sleep apnoea syndrome. Eur Respir J. 2002;20:158–64.CrossRef Jordan W, Hagedohm J, Wiltfang J, Laier-Groeneveld G, Tumani H, Rodenbeck A, et al. Biochemical markers of cerebrovascular injury in sleep apnoea syndrome. Eur Respir J. 2002;20:158–64.CrossRef
11.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRef
13.
go back to reference Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRef Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRef
14.
go back to reference Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.CrossRef Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.CrossRef
15.
go back to reference Braga CW, Martinez D, Wofchuk S, Portela LV, Souza DO. S100B and NSE serum levels in obstructive sleep apnea syndrome. Sleep Med. 2006;7:431–5.CrossRef Braga CW, Martinez D, Wofchuk S, Portela LV, Souza DO. S100B and NSE serum levels in obstructive sleep apnea syndrome. Sleep Med. 2006;7:431–5.CrossRef
16.
go back to reference Sonka K, Kelemen J, Kemlink D, Volná J, Pretl M, Zima T, et al. Evening and morning plasma levels of protein S100B in patients with obstructive sleep apnea. Neuro Endocrinol Lett. 2007;28:575–9.PubMed Sonka K, Kelemen J, Kemlink D, Volná J, Pretl M, Zima T, et al. Evening and morning plasma levels of protein S100B in patients with obstructive sleep apnea. Neuro Endocrinol Lett. 2007;28:575–9.PubMed
17.
go back to reference da Silva LG, Mottin CC, Souza DO, Portela LV, Braga CW, Vargas CB, et al. Serum S100B but not NSE levels are increased in morbidly obese individuals affected by obstructive sleep apnea-hypopnea syndrome. Obes Surg. 2008;18:993–9.CrossRef da Silva LG, Mottin CC, Souza DO, Portela LV, Braga CW, Vargas CB, et al. Serum S100B but not NSE levels are increased in morbidly obese individuals affected by obstructive sleep apnea-hypopnea syndrome. Obes Surg. 2008;18:993–9.CrossRef
18.
go back to reference Ergün P, Çiftçi B, Ergün R, Erdoğan Y, Turay UY, Biber C, et al. Serum neuron-specific enolase. (nse) and homocysteine levels in obtructive sleep apnea syndrome. Turkiye Klinikleri J Med Sci. 2010;30:1884–90.CrossRef Ergün P, Çiftçi B, Ergün R, Erdoğan Y, Turay UY, Biber C, et al. Serum neuron-specific enolase. (nse) and homocysteine levels in obtructive sleep apnea syndrome. Turkiye Klinikleri J Med Sci. 2010;30:1884–90.CrossRef
19.
go back to reference Duru S, Hikmet Fırat I, Colak N, Giniş Z, Delibaşı T, Ardıç S. Serum S100B protein: a useful marker in obstructive sleep apnea syndrome. Neurol Neurochir Pol. 2012;46(5):450–5.CrossRef Duru S, Hikmet Fırat I, Colak N, Giniş Z, Delibaşı T, Ardıç S. Serum S100B protein: a useful marker in obstructive sleep apnea syndrome. Neurol Neurochir Pol. 2012;46(5):450–5.CrossRef
20.
go back to reference Öztürk G, Giniş Z, Arlı B, Bilen Ş, Erden G, Ulusoy E, Züngün C. Serum S100B levels in patients with obstructive sleep apnea syndrome. J Clin Exp Invest. 2012;3:345–9.CrossRef Öztürk G, Giniş Z, Arlı B, Bilen Ş, Erden G, Ulusoy E, Züngün C. Serum S100B levels in patients with obstructive sleep apnea syndrome. J Clin Exp Invest. 2012;3:345–9.CrossRef
21.
go back to reference Traxdorf M, Wendler O, Tziridis K, Bauer J, Scherl C. S100B in serum and saliva: a valid invasive or non-invasive biomarker in obstructive sleep apnea? Eur Rev Med Pharmacol Sci. 2016;20:4766–74.PubMed Traxdorf M, Wendler O, Tziridis K, Bauer J, Scherl C. S100B in serum and saliva: a valid invasive or non-invasive biomarker in obstructive sleep apnea? Eur Rev Med Pharmacol Sci. 2016;20:4766–74.PubMed
22.
go back to reference Riad E, Nasser M, Hussein MH, Toraih EA, Fawzy MS. Serum S100B: a possible biomarker for severity of obstructive sleep apnea. Egypt J Chest Dis Tuberc. 2017;66:639–43.CrossRef Riad E, Nasser M, Hussein MH, Toraih EA, Fawzy MS. Serum S100B: a possible biomarker for severity of obstructive sleep apnea. Egypt J Chest Dis Tuberc. 2017;66:639–43.CrossRef
23.
go back to reference Fritscher LG, Mottin CC, Canani S, Chatkin JM. Obesity and obstructive sleep apnea-hypopnea syndrome: the impact of bariatric surgery. Obes Surg. 2007;17:95–9.CrossRef Fritscher LG, Mottin CC, Canani S, Chatkin JM. Obesity and obstructive sleep apnea-hypopnea syndrome: the impact of bariatric surgery. Obes Surg. 2007;17:95–9.CrossRef
24.
go back to reference Giunta J, Salifu M, McFarlane S. Sleep disorders and cardio-renal disease: implications for minority populations. Epidemiology. 2016;6:e120.PubMed Giunta J, Salifu M, McFarlane S. Sleep disorders and cardio-renal disease: implications for minority populations. Epidemiology. 2016;6:e120.PubMed
25.
go back to reference Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353:2034–41.CrossRef Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353:2034–41.CrossRef
26.
go back to reference Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.CrossRef Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.CrossRef
27.
go back to reference Bartlett DJ, Rae C, Thompson CH, Byth K, Joffe DA, Enright T, et al. Hippocampal area metabolites relate to severity and cognitive function in obstructive sleep apnea. Sleep Med. 2004;5:593–6.CrossRef Bartlett DJ, Rae C, Thompson CH, Byth K, Joffe DA, Enright T, et al. Hippocampal area metabolites relate to severity and cognitive function in obstructive sleep apnea. Sleep Med. 2004;5:593–6.CrossRef
28.
go back to reference Hrdemark HG, Ericsson N, Kotwica Z, Rundstrm G, Mendel-Hartvig I, Olsson Y, et al. S-100 protein and neuron-specific enolase in CSF after experimental traumatic or focal ischemic brain damage. J Neurosurg. 1989;71:727–31.CrossRef Hrdemark HG, Ericsson N, Kotwica Z, Rundstrm G, Mendel-Hartvig I, Olsson Y, et al. S-100 protein and neuron-specific enolase in CSF after experimental traumatic or focal ischemic brain damage. J Neurosurg. 1989;71:727–31.CrossRef
29.
go back to reference Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997;28:1956–60.CrossRef Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997;28:1956–60.CrossRef
30.
go back to reference Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342:1–12.CrossRef Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342:1–12.CrossRef
31.
go back to reference Gale SD, Hopkins RO. Effects of hypoxia on the brain: neuro - imaging and neuropsychological findings following carbon mono - xide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc. 2004;10:60–71.CrossRef Gale SD, Hopkins RO. Effects of hypoxia on the brain: neuro - imaging and neuropsychological findings following carbon mono - xide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc. 2004;10:60–71.CrossRef
32.
go back to reference Hu J, Ferreira A, Van Eldik LJ. S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem. 1997;69:2294–301.CrossRef Hu J, Ferreira A, Van Eldik LJ. S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem. 1997;69:2294–301.CrossRef
33.
go back to reference Ettinger A, Laumark AB, Ostroff RM, Brundell J, Baumgartner WA, Razumovsky AY. A new optical immunoassay for detection of S-100B protein in whole blood. Ann Thorac Surg. 1999;68:2196–201.CrossRef Ettinger A, Laumark AB, Ostroff RM, Brundell J, Baumgartner WA, Razumovsky AY. A new optical immunoassay for detection of S-100B protein in whole blood. Ann Thorac Surg. 1999;68:2196–201.CrossRef
34.
go back to reference Wiesmann M, Missler U, Gottmann D, Gehring S. Plasma S-100b protein concentration in healthy adults is age- and sex-independent. Clin Chem. 1998;44:1056–8.CrossRef Wiesmann M, Missler U, Gottmann D, Gehring S. Plasma S-100b protein concentration in healthy adults is age- and sex-independent. Clin Chem. 1998;44:1056–8.CrossRef
35.
go back to reference Kirkham FJ, Hewes DKM, Prengler M, Wade A, Lane R, Evans JP. Nocturnal hypoxaemia and central-nervous-system events in sickle-cell disease. Lancet. 2001;357:1656–9.CrossRef Kirkham FJ, Hewes DKM, Prengler M, Wade A, Lane R, Evans JP. Nocturnal hypoxaemia and central-nervous-system events in sickle-cell disease. Lancet. 2001;357:1656–9.CrossRef
36.
go back to reference Portela LV, Tort AB, Schaf DV, Ribeiro L, Nora DB, Walz R, et al. The serum S100B concentration is age dependent. Clin Chem. 2002;48:950–2.CrossRef Portela LV, Tort AB, Schaf DV, Ribeiro L, Nora DB, Walz R, et al. The serum S100B concentration is age dependent. Clin Chem. 2002;48:950–2.CrossRef
Metadata
Title
The effect of obstructive sleep apnea syndrome on serum S100B and NSE levels: a systematic review and meta-analysis of observational studies
Authors
Farzad Rezaei
Hooshyar Abbasi
Masoud Sadeghi
Mohammad Moslem Imani
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Sleep Apnea
Published in
BMC Pulmonary Medicine / Issue 1/2020
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-1063-8

Other articles of this Issue 1/2020

BMC Pulmonary Medicine 1/2020 Go to the issue