Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2020

Open Access 01-12-2020 | Lung Cancer | Research article

MiR-449b-5p targets lncRNA PSMG3-AS1 to suppress cancer cell proliferation in lung adenocarcinoma

Authors: Na Yue, Ming Ye, Ran Zhang, Yunquan Guo

Published in: BMC Pulmonary Medicine | Issue 1/2020

Login to get access

Abstract

Background

PSMG3-AS1 has been characterized as an oncogenic lncRNA in breast cancer, while its role in other cancers is unknown. This study investigated the role of PSMG3-AS1 in lung adenocarcinoma (LUAD).

Methods

This study included 64 LUAD patients (42 males and 22 females) who were enrolled between May 2012 and May 2014. RT-qPCR was used to evaluate the expression levels of lncRNA. Cell proliferation analysis was performed using CCK-8 kit.

Results

We found that upregulation of PSMG3-AS1 in LUAD predicted the poor survival of patients. MiR-449b-5p is downregulated in LUAD and the expression levels of LUAD were inversely correlated with the expression levels of PSMG3-AS1. MiR-449b-5p was predicted to target PSMG3-AS1, and overexpression of miR-449b-5p resulted in the downregulation of PSMG3-AS1 in LUAD cells. Cell proliferation analysis showed that overexpression of PSMG3-AS1 resulted in increased rate of cell proliferation. Overexpression of miR-449b-5p reduced the enhancing effects of PSMG3-AS1 on cell proliferation.

Conclusions

Therefore, miR-449b-5p may target PSMG3-AS1 in LUAD to suppress cancer cell proliferation.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.PubMed Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.PubMed
2.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMed
3.
go back to reference Inage T, Nakajima T, Yoshino I, Yasufuku K. Early lung Cancer detection. Clin Chest Med. 2018;39(1):45–55.PubMed Inage T, Nakajima T, Yoshino I, Yasufuku K. Early lung Cancer detection. Clin Chest Med. 2018;39(1):45–55.PubMed
4.
go back to reference Luo YH, Luo L, Wampfler JA, Wang Y, Liu D, Chen YM, et al. 5-year overall survival in patients with lung cancer eligible or ineligible for screening according to US preventive services task force criteria: a prospective, observational cohort study. Lancet Oncol. 2019;20(8):1098–108.PubMed Luo YH, Luo L, Wampfler JA, Wang Y, Liu D, Chen YM, et al. 5-year overall survival in patients with lung cancer eligible or ineligible for screening according to US preventive services task force criteria: a prospective, observational cohort study. Lancet Oncol. 2019;20(8):1098–108.PubMed
5.
go back to reference Korpanty GJ, Kamel-Reid S, Pintilie M, Hwang DM, Zer A, Liu G, et al. Lung cancer in never smokers from the Princess Margaret Cancer Centre. Oncotarget. 2018;9(32):22559–70.PubMedPubMedCentral Korpanty GJ, Kamel-Reid S, Pintilie M, Hwang DM, Zer A, Liu G, et al. Lung cancer in never smokers from the Princess Margaret Cancer Centre. Oncotarget. 2018;9(32):22559–70.PubMedPubMedCentral
6.
go back to reference Subramanian J, Govindan R. Lung cancer in never smokers: a review. J Clin Oncol. 2007;25(5):561–70.PubMed Subramanian J, Govindan R. Lung cancer in never smokers: a review. J Clin Oncol. 2007;25(5):561–70.PubMed
7.
go back to reference Borczuk AC, Gorenstein L, Walter KL, Assaad AA, Wang L, Powell CA. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol. 2003;163(5):1949–60.PubMedPubMedCentral Borczuk AC, Gorenstein L, Walter KL, Assaad AA, Wang L, Powell CA. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol. 2003;163(5):1949–60.PubMedPubMedCentral
8.
9.
go back to reference Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4(1):36–54.PubMedPubMedCentral Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4(1):36–54.PubMedPubMedCentral
10.
go back to reference Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, Lindsted T, et al. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci U S A. 2010;107(35):15535–40.PubMedPubMedCentral Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, Lindsted T, et al. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci U S A. 2010;107(35):15535–40.PubMedPubMedCentral
12.
go back to reference Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223(2):102–15.PubMed Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223(2):102–15.PubMed
13.
go back to reference Cui Y, Fan Y, Zhao G, Zhang Q, Bao Y, Cui Y, et al. Novel lncRNA PSMG3AS1 functions as a miR-143-3p sponge to increase the proliferation and migration of breast cancer cells. Oncol Rep. 2019;43(1):229-39. Cui Y, Fan Y, Zhao G, Zhang Q, Bao Y, Cui Y, et al. Novel lncRNA PSMG3AS1 functions as a miR-143-3p sponge to increase the proliferation and migration of breast cancer cells. Oncol Rep. 2019;43(1):229-39.
14.
go back to reference Jiang J, Yang X, He X, Ma W, Wang J, Zhou Q, et al. MicroRNA-449b-5p suppresses the growth and invasion of breast cancer cells via inhibiting CREPT-mediated Wnt/beta-catenin signaling. Chem Biol Interact. 2019;302:74–82.PubMed Jiang J, Yang X, He X, Ma W, Wang J, Zhou Q, et al. MicroRNA-449b-5p suppresses the growth and invasion of breast cancer cells via inhibiting CREPT-mediated Wnt/beta-catenin signaling. Chem Biol Interact. 2019;302:74–82.PubMed
15.
go back to reference Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 2017;45(W1):W435–W9.PubMedPubMedCentral Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 2017;45(W1):W435–W9.PubMedPubMedCentral
16.
go back to reference Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating survival in patients with lung Cancer and brain metastases: an update of the graded prognostic assessment for lung Cancer using molecular markers (lung-molGPA). JAMA Oncol. 2017;3(6):827–31. Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating survival in patients with lung Cancer and brain metastases: an update of the graded prognostic assessment for lung Cancer using molecular markers (lung-molGPA). JAMA Oncol. 2017;3(6):827–31.
17.
go back to reference Li Q, Lu C, Wang J, Gao M, Gao W. MicroRNA-449b-5p suppresses proliferation, migration, and invasion of osteosarcoma by targeting c-met. Med Sci Monit. 2019;25:6236–43.PubMedPubMedCentral Li Q, Lu C, Wang J, Gao M, Gao W. MicroRNA-449b-5p suppresses proliferation, migration, and invasion of osteosarcoma by targeting c-met. Med Sci Monit. 2019;25:6236–43.PubMedPubMedCentral
Metadata
Title
MiR-449b-5p targets lncRNA PSMG3-AS1 to suppress cancer cell proliferation in lung adenocarcinoma
Authors
Na Yue
Ming Ye
Ran Zhang
Yunquan Guo
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2020
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-01189-5

Other articles of this Issue 1/2020

BMC Pulmonary Medicine 1/2020 Go to the issue