Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2020

Open Access 01-12-2020 | Research article

Evaluation of time courses of agreement between minutely obtained transcutaneous blood gas data and the gold standard arterial data from spontaneously breathing Asian adults, and various subgroup analyses

Authors: Akira Umeda, Masahiro Ishizaka, Masamichi Tasaki, Tateki Yamane, Taiji Watanabe, Yasushi Inoue, Taichi Mochizuki, Yasumasa Okada, Sarah Kesler

Published in: BMC Pulmonary Medicine | Issue 1/2020

Login to get access

Abstract

Background

Usual clinical practice for arterial blood gas analysis (BGA) in conscious patients involves a one-time arterial puncture to be performed after a resting period of 20–30 min. The aim of this study was to evaluate the use of transcutaneous BGA for estimating this gold standard arterial BGA.

Methods

Spontaneously breathing Asian adults (healthy volunteers and respiratory patients) were enrolled (n = 295). Transcutaneous PO2 (PtcO2) and PCO2 (PtcCO2) were monitored using a transcutaneous monitor (TCM4, Radiometer Medical AsP, Denmark) with sensors placed on the chest, forearm, earlobe or forehead. Transcutaneous BGA at 1-min intervals was compared with arterial BGA at 30 min. Reasonable steps to find severe hypercapnia with PaCO2 > 50 mmHg were evaluated.

Results

Sensors on the chest and forearm were equally preferred and used because of small biases (n = 272). The average PCO2 bias was close to 0 mmHg at 4 min, and was almost constant (4–5 mmHg) with PtcCO2 being higher than PaCO2 at ≥8 min. The limit of agreement for PCO2 narrowed over time: ± 13.6 mmHg at 4 min, ± 7.5 mmHg at 12–13 min, and ± 6.3 mmHg at 30 min. The limit of agreement for PO2 also narrowed over time (± 23.1 mmHg at 30 min). Subgroup analyses showed that the PaCO2 and PaO2 levels, gender, and younger age significantly affected the biases. All hypercapnia subjects with PaCO2 > 50 mmHg (n = 13) showed PtcCO2 ≥ 50 mmHg for until 12 min.

Conclusions

Although PtcCO2 is useful, it cannot completely replace PaCO2 because PCO2 occasionally showed large bias. On the other hand, the prediction of PaO2 using PtcO2 was unrealistic in Asian adults. PtcCO2 ≥ 50 mmHg for until 12 min can be used as a screening tool for severe hypercapnia with PaCO2 > 50 mmHg.
Appendix
Available only for authorised users
Literature
1.
go back to reference Huch R, Huch A, Albani M, Gabriel M, Schulte FJ, Wolf H, et al. Transcutaneous PO2 monitoring in routine management of infants and children with cardiorespiratory problems. Pediatrics. 1976;57(5):681–90. Huch R, Huch A, Albani M, Gabriel M, Schulte FJ, Wolf H, et al. Transcutaneous PO2 monitoring in routine management of infants and children with cardiorespiratory problems. Pediatrics. 1976;57(5):681–90.
2.
go back to reference Huch A, Seiler D, Meinzer K, Huch R, Galster H, Lübbers DW. Transcutaneous PCO2 measurement with a miniaturised electrode. Lancet. 1977;1(8019):982–3.PubMed Huch A, Seiler D, Meinzer K, Huch R, Galster H, Lübbers DW. Transcutaneous PCO2 measurement with a miniaturised electrode. Lancet. 1977;1(8019):982–3.PubMed
3.
go back to reference Lucey JF. Clinical uses of transcutaneous oxygen monitoring. Adv Pediatr. 1981;28:27–56. Lucey JF. Clinical uses of transcutaneous oxygen monitoring. Adv Pediatr. 1981;28:27–56.
4.
go back to reference Wimberley PD, Pedersen KG, Thode J, Fogh-Andersen N, Sørensen AM, Siggaard-Andersen O. Transcutaneous and capillary pCO2 and pO2 measurements in healthy adults. Clin Chem. 1983;29(8):1471–3.PubMed Wimberley PD, Pedersen KG, Thode J, Fogh-Andersen N, Sørensen AM, Siggaard-Andersen O. Transcutaneous and capillary pCO2 and pO2 measurements in healthy adults. Clin Chem. 1983;29(8):1471–3.PubMed
5.
go back to reference Rüdiger M, Töpfer K, Hammer H, Schmalisch G, Wauer RR. A survey of transcutaneous blood gas monitoring among European neonatal intensive care units. BMC Pediatr. 2005;5:30.PubMedPubMedCentral Rüdiger M, Töpfer K, Hammer H, Schmalisch G, Wauer RR. A survey of transcutaneous blood gas monitoring among European neonatal intensive care units. BMC Pediatr. 2005;5:30.PubMedPubMedCentral
6.
go back to reference Delerme S, Montout V, Goulet H, Arhan A, Le Saché F, Devilliers C, et al. Concordance between transcutaneous and arterial measurements of carbon dioxide in an ED. Am J Emerg Med. 2012;30(9):1872–6.PubMed Delerme S, Montout V, Goulet H, Arhan A, Le Saché F, Devilliers C, et al. Concordance between transcutaneous and arterial measurements of carbon dioxide in an ED. Am J Emerg Med. 2012;30(9):1872–6.PubMed
7.
go back to reference Stieglitz S, Matthes S, Priegnitz C, Hagmeyer L, Randerath W. Comparison of transcutaneous and capillary measurement of PCO2 in hypercapnic subjects. Respir Care. 2016;61(1):98–105.PubMed Stieglitz S, Matthes S, Priegnitz C, Hagmeyer L, Randerath W. Comparison of transcutaneous and capillary measurement of PCO2 in hypercapnic subjects. Respir Care. 2016;61(1):98–105.PubMed
8.
go back to reference Nishiyama T, Nakamura S, Yamashita K. Effects of the electrode temperature of a new monitor, TCM4, on the measurement of transcutaneous oxygen and carbon dioxide tension. J Anesth. 2006;20(4):331–4.PubMed Nishiyama T, Nakamura S, Yamashita K. Effects of the electrode temperature of a new monitor, TCM4, on the measurement of transcutaneous oxygen and carbon dioxide tension. J Anesth. 2006;20(4):331–4.PubMed
9.
go back to reference Restrepo RD, Hirst KR, Wittnebel L, Wettstein R. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Respir Care. 2012;57(11):1955–62.PubMed Restrepo RD, Hirst KR, Wittnebel L, Wettstein R. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Respir Care. 2012;57(11):1955–62.PubMed
10.
go back to reference Ruangsetakit C, Chinsakchai K, Mahawongkajit P, Wongwanit C, Mutirangura P. Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia. J Wound Care. 2010;19(5):202–6.PubMed Ruangsetakit C, Chinsakchai K, Mahawongkajit P, Wongwanit C, Mutirangura P. Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia. J Wound Care. 2010;19(5):202–6.PubMed
11.
go back to reference Fuke S, Miyamoto K, Ohira H, Ohira M, Odajima N, Nishimura M. Evaluation of transcutaneous CO2 responses following acute changes in PaCO2 in healthy subjects. Respirology. 2009;14(3):436–42.PubMed Fuke S, Miyamoto K, Ohira H, Ohira M, Odajima N, Nishimura M. Evaluation of transcutaneous CO2 responses following acute changes in PaCO2 in healthy subjects. Respirology. 2009;14(3):436–42.PubMed
12.
go back to reference Cuvelier A, Grigoriu B, Morano LC, Muir JF. Limitation of transcutaneous carbon dioxide measurements for assessing long-term mechanical ventilation. Chest. 2005;127(5):1744–8.PubMed Cuvelier A, Grigoriu B, Morano LC, Muir JF. Limitation of transcutaneous carbon dioxide measurements for assessing long-term mechanical ventilation. Chest. 2005;127(5):1744–8.PubMed
13.
go back to reference Storre JH, Steurer B, Kabitz HJ, Dreher M, Windisch W. Transcutaneous PCO2 monitoring during initiation of noninvasive ventilation. Chest. 2007;132(6):1810–6.PubMed Storre JH, Steurer B, Kabitz HJ, Dreher M, Windisch W. Transcutaneous PCO2 monitoring during initiation of noninvasive ventilation. Chest. 2007;132(6):1810–6.PubMed
14.
go back to reference Kesten S, Chapman KR, Rebuck AS. Response characteristics of a dual transcutaneous oxygen/carbon dioxide monitoring system. Chest. 1991;99(5):1211–5.PubMed Kesten S, Chapman KR, Rebuck AS. Response characteristics of a dual transcutaneous oxygen/carbon dioxide monitoring system. Chest. 1991;99(5):1211–5.PubMed
15.
go back to reference Dejours P. Oxygen and carbon dioxide exchanges by diffusion. In: Principles of comparative respiratory physiology. 2nd ed. Amsterdam: Elsevier/North-Holland Biomedical Press; 1981. p. 63–74. Dejours P. Oxygen and carbon dioxide exchanges by diffusion. In: Principles of comparative respiratory physiology. 2nd ed. Amsterdam: Elsevier/North-Holland Biomedical Press; 1981. p. 63–74.
16.
go back to reference Nishiyama T, Nakamura S, Yamashita K. Comparison of the transcutaneous oxygen and carbon dioxide tension in different electrode locations during general anaesthesia. Eur J Anaesthesiol. 2006;23(12):1049–54.PubMed Nishiyama T, Nakamura S, Yamashita K. Comparison of the transcutaneous oxygen and carbon dioxide tension in different electrode locations during general anaesthesia. Eur J Anaesthesiol. 2006;23(12):1049–54.PubMed
17.
go back to reference Malley WJ. Arterial blood gases. In: Clinical blood gases: Assessment and Intervention. 2nd ed. St. Louis: Elsevier Saunders; 2005. p. 3–34. Malley WJ. Arterial blood gases. In: Clinical blood gases: Assessment and Intervention. 2nd ed. St. Louis: Elsevier Saunders; 2005. p. 3–34.
18.
go back to reference American Association for Respiratory Care. AARC clinical practice guideline. Sampling for arterial blood gas analysis. Respir Care. 1992;37(8):913–7. American Association for Respiratory Care. AARC clinical practice guideline. Sampling for arterial blood gas analysis. Respir Care. 1992;37(8):913–7.
19.
go back to reference Sasse SA, Jaffe MB, Chen PA, Voelker KG, Mahutte CK. Arterial oxygenation time after an FIO2 increase in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;152(1):148–52.PubMed Sasse SA, Jaffe MB, Chen PA, Voelker KG, Mahutte CK. Arterial oxygenation time after an FIO2 increase in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;152(1):148–52.PubMed
20.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.
21.
go back to reference Malley WJ. Blood gas electrodes and quality assurance. In: Clinical blood gases: Assessment and Intervention. 2nd ed. St. Louis: Elsevier Saunders; 2005. p. 82–113. Malley WJ. Blood gas electrodes and quality assurance. In: Clinical blood gases: Assessment and Intervention. 2nd ed. St. Louis: Elsevier Saunders; 2005. p. 82–113.
22.
go back to reference Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB. Designing clinical research. 4th ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2013. Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB. Designing clinical research. 4th ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2013.
23.
go back to reference Umeda A, Kawasaki K, Abe T, Watanabe M, Ishizaka A, Okada Y. Hyperventilation and finger exercise increase venous-arterial PCO2 and pH differences. Am J Emerg Med. 2008;26(9):975–80.PubMed Umeda A, Kawasaki K, Abe T, Watanabe M, Ishizaka A, Okada Y. Hyperventilation and finger exercise increase venous-arterial PCO2 and pH differences. Am J Emerg Med. 2008;26(9):975–80.PubMed
24.
go back to reference Aliwalas LL, Noble L, Nesbitt K, Fallah S, Shah V, Shah PS. Agreement of carbon dioxide levels measured by arterial, transcutaneous and end tidal methods in preterm infants < or = 28 weeks gestation. J Perinatol. 2005;25(1):26–9. Aliwalas LL, Noble L, Nesbitt K, Fallah S, Shah V, Shah PS. Agreement of carbon dioxide levels measured by arterial, transcutaneous and end tidal methods in preterm infants < or = 28 weeks gestation. J Perinatol. 2005;25(1):26–9.
25.
go back to reference Tobias JD, Meyer DJ. Noninvasive monitoring of carbon dioxide during respiratory failure in toddlers and infants: end-tidal versus transcutaneous carbon dioxide. Anesth Analg. 1997;85(1):55–8. Tobias JD, Meyer DJ. Noninvasive monitoring of carbon dioxide during respiratory failure in toddlers and infants: end-tidal versus transcutaneous carbon dioxide. Anesth Analg. 1997;85(1):55–8.
26.
go back to reference Oshibuchi M, Cho S, Hara T, Tomiyasu S, Makita T, Sumikawa K. A comparative evaluation of transcutaneous and end-tidal measurements of CO2 in thoracic anesthesia. Anesth Analg. 2003;97(3):776–9. Oshibuchi M, Cho S, Hara T, Tomiyasu S, Makita T, Sumikawa K. A comparative evaluation of transcutaneous and end-tidal measurements of CO2 in thoracic anesthesia. Anesth Analg. 2003;97(3):776–9.
27.
go back to reference Tingay DG, Stewart MJ, Morley CJ. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F523–6.PubMedPubMedCentral Tingay DG, Stewart MJ, Morley CJ. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F523–6.PubMedPubMedCentral
28.
go back to reference Hirabayashi M, Fujiwara C, Ohtani N, Kagawa S, Kamide M. Transcutaneous PCO2 monitors are more accurate than end-tidal PCO2 monitors. J Anesth. 2009;23(2):198–202. Hirabayashi M, Fujiwara C, Ohtani N, Kagawa S, Kamide M. Transcutaneous PCO2 monitors are more accurate than end-tidal PCO2 monitors. J Anesth. 2009;23(2):198–202.
29.
go back to reference Severinghaus JW, Bradley AF, Stafford MJ. Transcutaneous PCO2 electrode design with internal silver heat path. Birth Defects Orig Artic Ser. 1979;15(4):265–70. Severinghaus JW, Bradley AF, Stafford MJ. Transcutaneous PCO2 electrode design with internal silver heat path. Birth Defects Orig Artic Ser. 1979;15(4):265–70.
30.
go back to reference Severinghaus JW, Stafford M, Thunstrom AM. Estimation of skin metabolism and blood flow with tcPO2 and tcPO2 electrodes by cuff occlusion of the circulation. Acta Anaesthesiol Scand Suppl. 1978;68:9–15. Severinghaus JW, Stafford M, Thunstrom AM. Estimation of skin metabolism and blood flow with tcPO2 and tcPO2 electrodes by cuff occlusion of the circulation. Acta Anaesthesiol Scand Suppl. 1978;68:9–15.
31.
go back to reference Malley WJ. Noninvasive blood gas monitoring. In: Clinical blood gases: Assessment and Intervention. 2nd ed. St. Louis: Elsevier Saunders; 2005. p. 387–418. Malley WJ. Noninvasive blood gas monitoring. In: Clinical blood gases: Assessment and Intervention. 2nd ed. St. Louis: Elsevier Saunders; 2005. p. 387–418.
32.
go back to reference Bendjelid K, Schütz N, Stotz M, Gerard I, Suter PM, Romand JA. Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med. 2005;33(10):2203–6.PubMed Bendjelid K, Schütz N, Stotz M, Gerard I, Suter PM, Romand JA. Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med. 2005;33(10):2203–6.PubMed
33.
go back to reference Kulandavelu S, Balkan W, Hare JM. Regulation of oxygen delivery to the body via hypoxic vasodilation. Proc Natl Acad Sci U S A. 2015;112(20):6254–5. Kulandavelu S, Balkan W, Hare JM. Regulation of oxygen delivery to the body via hypoxic vasodilation. Proc Natl Acad Sci U S A. 2015;112(20):6254–5.
34.
go back to reference Sandoval J, Alvarado P, Martínez-Guerra ML, Gómez A, Palomar A, Meza S, et al. Effect of body position changes on pulmonary gas exchange in Eisenmenger's syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1070–3.PubMed Sandoval J, Alvarado P, Martínez-Guerra ML, Gómez A, Palomar A, Meza S, et al. Effect of body position changes on pulmonary gas exchange in Eisenmenger's syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1070–3.PubMed
35.
go back to reference Hardie JA, Mørkve O, Ellingsen I. Effect of body position on arterial oxygen tension in the elderly. Respiration. 2002;69(2):123–8.PubMed Hardie JA, Mørkve O, Ellingsen I. Effect of body position on arterial oxygen tension in the elderly. Respiration. 2002;69(2):123–8.PubMed
Metadata
Title
Evaluation of time courses of agreement between minutely obtained transcutaneous blood gas data and the gold standard arterial data from spontaneously breathing Asian adults, and various subgroup analyses
Authors
Akira Umeda
Masahiro Ishizaka
Masamichi Tasaki
Tateki Yamane
Taiji Watanabe
Yasushi Inoue
Taichi Mochizuki
Yasumasa Okada
Sarah Kesler
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2020
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-01184-w

Other articles of this Issue 1/2020

BMC Pulmonary Medicine 1/2020 Go to the issue