Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2017

Open Access 01-12-2017 | Research article

Volatile organic compounds in ventilated critical care patients: a systematic evaluation of cofactors

Authors: Tobias Hüppe, Dominik Lorenz, Mario Wachowiak, Felix Maurer, Andreas Meiser, Heinrich Groesdonk, Tobias Fink, Daniel I. Sessler, Sascha Kreuer

Published in: BMC Pulmonary Medicine | Issue 1/2017

Login to get access

Abstract

Background

Expired gas (exhalome) analysis of ventilated critical ill patients can be used for drug monitoring and biomarker diagnostics. However, it remains unclear to what extent volatile organic compounds are present in gases from intensive care ventilators, gas cylinders, central hospital gas supplies, and ambient air. We therefore systematically evaluated background volatiles in inspired gas and their influence on the exhalome.

Methods

We used multi-capillary column ion-mobility spectrometry (MCC-IMS) breath analysis in five mechanically ventilated critical care patients, each over a period of 12 h. We also evaluated volatile organic compounds in inspired gas provided by intensive care ventilators, in compressed air and oxygen from the central gas supply and cylinders, and in the ambient air of an intensive care unit. Volatiles detectable in both inspired and exhaled gas with patient-to-inspired gas ratios < 5 were defined as contaminating compounds.

Results

A total of 76 unique MCC-IMS signals were detected, with 39 being identified volatile compounds: 73 signals were from the exhalome, 12 were identified in inspired gas from critical care ventilators, and 34 were from ambient air. Five volatile compounds were identified from the central gas supply, four from compressed air, and 17 from compressed oxygen. We observed seven contaminating volatiles with patient-to-inspired gas ratios < 5, thus representing exogenous signals of sufficient magnitude that might potentially be mistaken for exhaled biomarkers.

Conclusions

Volatile organic compounds can be present in gas from central hospital supplies, compressed gas tanks, and ventilators. Accurate assessment of the exhalome in critical care patients thus requires frequent profiling of inspired gases and appropriate normalisation of the expired signals.
Literature
1.
go back to reference Baumbach JI. Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res. 2009;3:34001.CrossRef Baumbach JI. Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res. 2009;3:34001.CrossRef
2.
go back to reference de Lacy CB, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8:14001.CrossRef de Lacy CB, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8:14001.CrossRef
3.
go back to reference Fink T, Baumbach JI, Kreuer S. Ion mobility spectrometry in breath research. J Breath Res. 2014;8:27104.CrossRef Fink T, Baumbach JI, Kreuer S. Ion mobility spectrometry in breath research. J Breath Res. 2014;8:27104.CrossRef
4.
go back to reference Sakai EM, Connolly LA, Klauck JA. Inhalation anesthesiology and volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. Pharmacotherapy. 2005;25:1773–88.CrossRefPubMed Sakai EM, Connolly LA, Klauck JA. Inhalation anesthesiology and volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. Pharmacotherapy. 2005;25:1773–88.CrossRefPubMed
5.
go back to reference Fink T, Wolf A, Maurer F, Albrecht FW, Heim N, Wolf B, et al. Volatile organic compounds during inflammation and sepsis in rats: a potential breath test using ion-mobility spectrometry. Anesthesiology. 2015;122:117–26.CrossRefPubMed Fink T, Wolf A, Maurer F, Albrecht FW, Heim N, Wolf B, et al. Volatile organic compounds during inflammation and sepsis in rats: a potential breath test using ion-mobility spectrometry. Anesthesiology. 2015;122:117–26.CrossRefPubMed
6.
go back to reference Albrecht FW, Hüppe T, Fink T, Maurer F, Wolf A, Wolf B, et al. Influence of the respirator on volatile organic compounds: an animal study in rats over 24 hours. J Breath Res. 2015;9:16007.CrossRef Albrecht FW, Hüppe T, Fink T, Maurer F, Wolf A, Wolf B, et al. Influence of the respirator on volatile organic compounds: an animal study in rats over 24 hours. J Breath Res. 2015;9:16007.CrossRef
7.
go back to reference Wolf A, Baumbach JI, Kleber A, Maurer F, Maddula S, Favrod P, et al. Multi-capillary column-ion mobility spectrometer (MCC-IMS) breath analysis in ventilated rats: a model with the feasibility of long-term measurements. J Breath Res. 2014;8:16006.CrossRef Wolf A, Baumbach JI, Kleber A, Maurer F, Maddula S, Favrod P, et al. Multi-capillary column-ion mobility spectrometer (MCC-IMS) breath analysis in ventilated rats: a model with the feasibility of long-term measurements. J Breath Res. 2014;8:16006.CrossRef
8.
go back to reference Maurer F, Hauschild AC, Eisinger K, Baumbach J, Mayor A, Baumbach JI. MIMA - a software for analyte identification in MCC/IMS chromatograms by mapping accompanying GC/MS measurements. Int J Ion Mobil Spectrom. 2014;17:95–101.CrossRef Maurer F, Hauschild AC, Eisinger K, Baumbach J, Mayor A, Baumbach JI. MIMA - a software for analyte identification in MCC/IMS chromatograms by mapping accompanying GC/MS measurements. Int J Ion Mobil Spectrom. 2014;17:95–101.CrossRef
9.
go back to reference Ritter JJ, Adams NK. Exponential Dilution as a Calibration Technique. Anal Chem. 1976;48:612–9.CrossRef Ritter JJ, Adams NK. Exponential Dilution as a Calibration Technique. Anal Chem. 1976;48:612–9.CrossRef
10.
go back to reference Fowler SJ, Basanta-Sanchez M, Xu Y, Goodacre R, Dark PM. Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax. 2015;70:320–5.CrossRefPubMed Fowler SJ, Basanta-Sanchez M, Xu Y, Goodacre R, Dark PM. Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax. 2015;70:320–5.CrossRefPubMed
11.
go back to reference Schnabel R, Fijten R, Smolinska A, Dallinga J, Boumans M-L, Stobberingh E, et al. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci Rep. 2015;5:17179.CrossRefPubMedPubMedCentral Schnabel R, Fijten R, Smolinska A, Dallinga J, Boumans M-L, Stobberingh E, et al. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci Rep. 2015;5:17179.CrossRefPubMedPubMedCentral
12.
go back to reference Filipiak W, Beer R, Sponring A, Filipiak A, Ager C, Schiefecker A, et al. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: a prospective pilot study. J Breath Res. 2015;9:16004.CrossRef Filipiak W, Beer R, Sponring A, Filipiak A, Ager C, Schiefecker A, et al. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: a prospective pilot study. J Breath Res. 2015;9:16004.CrossRef
13.
go back to reference Lee HJ, Meinardi S, Pahl MV, Vaziri ND, Blake DR. Exposure to potentially toxic hydrocarbons and halocarbons released from the dialyzer and tubing set during Hemodialysis. Am J Kidney Dis. 2012;60:609–16.CrossRefPubMed Lee HJ, Meinardi S, Pahl MV, Vaziri ND, Blake DR. Exposure to potentially toxic hydrocarbons and halocarbons released from the dialyzer and tubing set during Hemodialysis. Am J Kidney Dis. 2012;60:609–16.CrossRefPubMed
14.
go back to reference Kischkel S, Miekisch W, Fuchs P, Schubert JK. Breath analysis during one-lung ventilation in cancer patients. Eur Respir J. 2012;40:706–13.CrossRefPubMed Kischkel S, Miekisch W, Fuchs P, Schubert JK. Breath analysis during one-lung ventilation in cancer patients. Eur Respir J. 2012;40:706–13.CrossRefPubMed
15.
go back to reference Risby TH, Sehnert SS. Clinical application of breath biomarkers of oxidative stress status. Free Radic Biol Med. 1999;27:1182–92.CrossRefPubMed Risby TH, Sehnert SS. Clinical application of breath biomarkers of oxidative stress status. Free Radic Biol Med. 1999;27:1182–92.CrossRefPubMed
16.
go back to reference Gao J, Zou Y, Wang Y, Wang F, Lang L, Wang P, et al. Breath analysis for noninvasively differentiating Acinetobacter Baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. J Breath Res. 2016;10:27102.CrossRef Gao J, Zou Y, Wang Y, Wang F, Lang L, Wang P, et al. Breath analysis for noninvasively differentiating Acinetobacter Baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. J Breath Res. 2016;10:27102.CrossRef
17.
go back to reference Bessonneau V, Mosqueron L, Berrubé A, Mukensturm G, Buffet-Bataillon S, Gangneux J-P, et al. VOC contamination in hospital, from stationary sampling of a large panel of compounds, in view of healthcare workers and patients exposure assessment. PLoS One. 2013;8:e55535.CrossRefPubMedPubMedCentral Bessonneau V, Mosqueron L, Berrubé A, Mukensturm G, Buffet-Bataillon S, Gangneux J-P, et al. VOC contamination in hospital, from stationary sampling of a large panel of compounds, in view of healthcare workers and patients exposure assessment. PLoS One. 2013;8:e55535.CrossRefPubMedPubMedCentral
18.
go back to reference Wang Y, Han H, Shen C, Li J, Wang H, Chu Y. Control of solvent use in medical devices by proton transfer reaction mass spectrometry and ion molecule reaction mass spectrometry. J Pharm Biomed Anal. 2009;50:252–6.CrossRefPubMed Wang Y, Han H, Shen C, Li J, Wang H, Chu Y. Control of solvent use in medical devices by proton transfer reaction mass spectrometry and ion molecule reaction mass spectrometry. J Pharm Biomed Anal. 2009;50:252–6.CrossRefPubMed
19.
go back to reference Zechman JM, Aldinger S, Labows JN. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J Chromatogr. 1986;377:49–57.CrossRefPubMed Zechman JM, Aldinger S, Labows JN. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J Chromatogr. 1986;377:49–57.CrossRefPubMed
20.
go back to reference Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C, Wiesenhofer H, et al. Molecular analysis of volatile metabolites released specifically by Staphylococcus Aureus and Pseudomonas Aeruginosa. BMC Microbiol. 2012;12:113.CrossRefPubMedPubMedCentral Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C, Wiesenhofer H, et al. Molecular analysis of volatile metabolites released specifically by Staphylococcus Aureus and Pseudomonas Aeruginosa. BMC Microbiol. 2012;12:113.CrossRefPubMedPubMedCentral
21.
go back to reference Yamada Y, Yamada G, Otsuka M, Nishikiori H, Ikeda K, Umeda Y, et al. Volatile organic compounds in exhaled breath of idiopathic pulmonary fibrosis for discrimination from healthy subjects. Lung. 2017;195:247–54.CrossRefPubMed Yamada Y, Yamada G, Otsuka M, Nishikiori H, Ikeda K, Umeda Y, et al. Volatile organic compounds in exhaled breath of idiopathic pulmonary fibrosis for discrimination from healthy subjects. Lung. 2017;195:247–54.CrossRefPubMed
22.
go back to reference Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A, Ager C, et al. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res. 2012;6:36008.CrossRef Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A, Ager C, et al. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res. 2012;6:36008.CrossRef
23.
go back to reference Sturney SC, Storer MK, Shaw GM, Shaw DE, Epton MJ. Off-line breath acetone analysis in critical illness. J Breath Res. 2013;7:37102.CrossRef Sturney SC, Storer MK, Shaw GM, Shaw DE, Epton MJ. Off-line breath acetone analysis in critical illness. J Breath Res. 2013;7:37102.CrossRef
24.
go back to reference Mochalski P, Al-Zoairy R, Niederwanger A, Unterkofler K, Amann A. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro. J Breath Res. 2014;8:46003.CrossRef Mochalski P, Al-Zoairy R, Niederwanger A, Unterkofler K, Amann A. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro. J Breath Res. 2014;8:46003.CrossRef
25.
go back to reference Carroll W, Lenney W, Wang TS, Spanel P, Alcock A, Smith D. Detection of volatile compounds emitted by Pseudomonas Aeruginosa using selected ion flow tube mass spectrometry. Pediatr Pulmonol. 2005;39:452–6.CrossRefPubMed Carroll W, Lenney W, Wang TS, Spanel P, Alcock A, Smith D. Detection of volatile compounds emitted by Pseudomonas Aeruginosa using selected ion flow tube mass spectrometry. Pediatr Pulmonol. 2005;39:452–6.CrossRefPubMed
26.
go back to reference Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347:25–39.CrossRefPubMed Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347:25–39.CrossRefPubMed
27.
go back to reference Foster WM, Jiang L, Stetkiewicz PT, Risby TH. Breath isoprene: temporal changes in respiratory output after exposure to ozone. J Appl Physiol. 1996;80:706–10.PubMed Foster WM, Jiang L, Stetkiewicz PT, Risby TH. Breath isoprene: temporal changes in respiratory output after exposure to ozone. J Appl Physiol. 1996;80:706–10.PubMed
28.
go back to reference Mendis S, Sobotka PA, Euler DE. Expired hydrocarbons in patients with acute myocardial infarction. Free Radic Res. 1995;23:117–22.CrossRefPubMed Mendis S, Sobotka PA, Euler DE. Expired hydrocarbons in patients with acute myocardial infarction. Free Radic Res. 1995;23:117–22.CrossRefPubMed
29.
go back to reference Schubert JK, Miekisch W, Birken T, Geiger K, Noldge-Schomburg GF. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers. 2005;10:138–52.CrossRefPubMed Schubert JK, Miekisch W, Birken T, Geiger K, Noldge-Schomburg GF. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers. 2005;10:138–52.CrossRefPubMed
30.
go back to reference Mochalski P, Rudnicka J, Agapiou A, Statheropoulos M, Amann A, Buszewski B. Near real-time VOCs analysis using an aspiration ion mobility spectrometer. J Breath Res. 2013;7(026002):11. Mochalski P, Rudnicka J, Agapiou A, Statheropoulos M, Amann A, Buszewski B. Near real-time VOCs analysis using an aspiration ion mobility spectrometer. J Breath Res. 2013;7(026002):11.
31.
go back to reference Tang X, Misztal PK, Nazaroff WW, Goldstein AH. Volatile Organic Compound Emissions from Humans Indoors. Environ Sci Technol. 2016;acs.est.6b04415. Tang X, Misztal PK, Nazaroff WW, Goldstein AH. Volatile Organic Compound Emissions from Humans Indoors. Environ Sci Technol. 2016;acs.est.6b04415.
32.
go back to reference Turner C, Španěl P, Smith D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry. SIFT-MS Physiol Meas. 2006;27(7):637–48.CrossRefPubMed Turner C, Španěl P, Smith D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry. SIFT-MS Physiol Meas. 2006;27(7):637–48.CrossRefPubMed
33.
go back to reference Ernstgård L, Shibata E, Johanson G. Uptake and disposition of inhaled methanol vapor in humans. Toxicol Sci. 2005;88:30–8.CrossRefPubMed Ernstgård L, Shibata E, Johanson G. Uptake and disposition of inhaled methanol vapor in humans. Toxicol Sci. 2005;88:30–8.CrossRefPubMed
34.
go back to reference Fernandez del Rio R, O’Hara ME, Holt A, Pemberton P, Shah T, Whitehouse T, et al. Volatile biomarkers in breath associated with liver cirrhosis - comparisons of pre- and post-liver transplant breath samples. EBioMedicine. 2015;(2):1243–50. Fernandez del Rio R, O’Hara ME, Holt A, Pemberton P, Shah T, Whitehouse T, et al. Volatile biomarkers in breath associated with liver cirrhosis - comparisons of pre- and post-liver transplant breath samples. EBioMedicine. 2015;(2):1243–50.
35.
go back to reference Van Berkel JJBN, Dallinga JW, Möller GM, Godschalk RWL, Moonen E, Wouters EFM, et al. Development of accurate classification method based on the analysis of volatile organic compounds from human exhaled air. J Chromatogr B Anal Technol Biomed Life Sci. 2008;861:101–7.CrossRef Van Berkel JJBN, Dallinga JW, Möller GM, Godschalk RWL, Moonen E, Wouters EFM, et al. Development of accurate classification method based on the analysis of volatile organic compounds from human exhaled air. J Chromatogr B Anal Technol Biomed Life Sci. 2008;861:101–7.CrossRef
36.
go back to reference Mullaugh KM, Hamilton JM, Avery GB, Felix JD, Mead RN, Willey JD, et al. Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere. 2015;134:203–9.CrossRefPubMed Mullaugh KM, Hamilton JM, Avery GB, Felix JD, Mead RN, Willey JD, et al. Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere. 2015;134:203–9.CrossRefPubMed
37.
go back to reference Yoshida T. Estimation of absorption of aromatic hydrocarbons diffusing from interior materials in automobile cabins by inhalation toxicokinetic analysis in rats. J Appl Toxicol. 2010;30:525–35.CrossRefPubMed Yoshida T. Estimation of absorption of aromatic hydrocarbons diffusing from interior materials in automobile cabins by inhalation toxicokinetic analysis in rats. J Appl Toxicol. 2010;30:525–35.CrossRefPubMed
38.
go back to reference Filipiak W, Filipiak A, Sponring A, Schmid T, Zelger B, Ager C, et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J Breath Res. 2014;8:27111.CrossRef Filipiak W, Filipiak A, Sponring A, Schmid T, Zelger B, Ager C, et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J Breath Res. 2014;8:27111.CrossRef
39.
go back to reference Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, et al. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth. 2009;103:822–7.CrossRefPubMed Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, et al. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth. 2009;103:822–7.CrossRefPubMed
40.
go back to reference Phillips M, Greenberg J, Sabas M. Alveolar gradient of pentane in normal human breath. Free Radic Res. 1994;20:333–7.CrossRefPubMed Phillips M, Greenberg J, Sabas M. Alveolar gradient of pentane in normal human breath. Free Radic Res. 1994;20:333–7.CrossRefPubMed
41.
go back to reference Dembinski R, Max M, Bensberg R, Bickenbach J, Kuhlen R, Rossaint R. High-frequency oscillatory ventilation in experimental lung injury: effects on gas exchange. Intensive Care Med. 2002;28:768–74.CrossRefPubMed Dembinski R, Max M, Bensberg R, Bickenbach J, Kuhlen R, Rossaint R. High-frequency oscillatory ventilation in experimental lung injury: effects on gas exchange. Intensive Care Med. 2002;28:768–74.CrossRefPubMed
42.
go back to reference Spaněl P, Dryahina K, Smith D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J Breath Res. 2013;7:17106.CrossRef Spaněl P, Dryahina K, Smith D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J Breath Res. 2013;7:17106.CrossRef
Metadata
Title
Volatile organic compounds in ventilated critical care patients: a systematic evaluation of cofactors
Authors
Tobias Hüppe
Dominik Lorenz
Mario Wachowiak
Felix Maurer
Andreas Meiser
Heinrich Groesdonk
Tobias Fink
Daniel I. Sessler
Sascha Kreuer
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2017
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-017-0460-0

Other articles of this Issue 1/2017

BMC Pulmonary Medicine 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.