Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2017

Open Access 01-12-2017 | Research article

FEV1 and FVC and systemic inflammation in a spinal cord injury cohort

Authors: Jaime E. Hart, Rebekah Goldstein, Palak Walia, Merilee Teylan, Antonio Lazzari, Carlos G. Tun, Eric Garshick

Published in: BMC Pulmonary Medicine | Issue 1/2017

Login to get access

Abstract

Background

Systemic inflammation has been associated with reduced pulmonary function in individuals with and without chronic medical conditions. Individuals with chronic spinal cord injury (SCI) have clinical characteristics that promote systemic inflammation and also have reduced pulmonary function. We sought to assess the associations between biomarkers of systemic inflammation with pulmonary function in a chronic SCI cohort, adjusting for other potential confounding factors.

Methods

Participants (n = 311) provided a blood sample, completed a respiratory health questionnaire, and underwent spirometry. Linear regression methods were used to assess cross-sectional associations between plasma C-reactive protein (CRP) and interleukin-6 (IL-6) with forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC.

Results

There were statistically significant inverse relationships between plasma CRP and IL-6 assessed in quartiles or continuously with FEV1 and FVC. In fully adjusted models, each interquartile range (5.91 mg/L) increase in CRP was associated with a significant decrease in FEV1 (−55.85 ml; 95% CI: -89.21, −22.49) and decrease in FVC (−65.50 ml; 95% CI: -106.61, −24.60). There were similar significant findings for IL-6. There were no statistically significant associations observed with FEV1/FVC.

Conclusion

Plasma CRP and IL-6 in individuals with chronic SCI are inversely associated with FEV1 and FVC, independent of SCI level and severity of injury, BMI, and other covariates. This finding suggests that systemic inflammation associated with chronic SCI may contribute to reduced pulmonary function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–80.PubMedPubMedCentralCrossRef Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–80.PubMedPubMedCentralCrossRef
2.
go back to reference Yende S, Waterer GW, Tolley EA, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax. 2006;61(1):10–6.PubMedCrossRef Yende S, Waterer GW, Tolley EA, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax. 2006;61(1):10–6.PubMedCrossRef
3.
go back to reference Walter RE, Wilk JB, Larson MG, et al. Systemic inflammation and COPD: the Framingham heart study. Chest. 2008;133(1):19–25.PubMedCrossRef Walter RE, Wilk JB, Larson MG, et al. Systemic inflammation and COPD: the Framingham heart study. Chest. 2008;133(1):19–25.PubMedCrossRef
4.
go back to reference Aronson D, Roterman I, Yigla M, et al. Inverse association between pulmonary function and C-reactive protein in apparently healthy subjects. Am J Respir Crit Care Med. 2006;174(6):626–32.PubMedCrossRef Aronson D, Roterman I, Yigla M, et al. Inverse association between pulmonary function and C-reactive protein in apparently healthy subjects. Am J Respir Crit Care Med. 2006;174(6):626–32.PubMedCrossRef
5.
go back to reference Thorleifsson SJ, Margretardottir OB, Gudmundsson G, et al. Chronic airflow obstruction and markers of systemic inflammation: results from the BOLD study in Iceland. Respir Med. 2009;103(10):1548–53.PubMedPubMedCentralCrossRef Thorleifsson SJ, Margretardottir OB, Gudmundsson G, et al. Chronic airflow obstruction and markers of systemic inflammation: results from the BOLD study in Iceland. Respir Med. 2009;103(10):1548–53.PubMedPubMedCentralCrossRef
6.
go back to reference Kuhlmann A, Ólafsdóttir IS, Lind L, Sundstrom J, Janson C. Association of biomarkers of inflammation and cell adhesion with lung function in the elderly: a population-based study. BMC Geriatr. 2013;13:82.PubMedPubMedCentralCrossRef Kuhlmann A, Ólafsdóttir IS, Lind L, Sundstrom J, Janson C. Association of biomarkers of inflammation and cell adhesion with lung function in the elderly: a population-based study. BMC Geriatr. 2013;13:82.PubMedPubMedCentralCrossRef
7.
go back to reference Duprez DA, Hearst MO, Lutsey PL, et al. Associations among lung function, arterial elasticity, and circulating endothelial and inflammation markers: the multiethnic study of atherosclerosis. Hypertension. 2013;61(2):542–8.PubMedPubMedCentralCrossRef Duprez DA, Hearst MO, Lutsey PL, et al. Associations among lung function, arterial elasticity, and circulating endothelial and inflammation markers: the multiethnic study of atherosclerosis. Hypertension. 2013;61(2):542–8.PubMedPubMedCentralCrossRef
8.
go back to reference Agarwal R, Zaheer MS, Ahmad Z, Akhtar J. The relationship between C-reactive protein and prognostic factors in chronic obstructive pulmonary disease. Multidiscip Respir Med. 2013;8(1):63.PubMedPubMedCentralCrossRef Agarwal R, Zaheer MS, Ahmad Z, Akhtar J. The relationship between C-reactive protein and prognostic factors in chronic obstructive pulmonary disease. Multidiscip Respir Med. 2013;8(1):63.PubMedPubMedCentralCrossRef
9.
go back to reference Aksu F, Capan N, Aksu K, et al. C-reactive protein levels are raised in stable chronic obstructive pulmonary disease patients independent of smoking behavior and biomass exposure. J Thorac Dis. 2013;5(4):414–21.PubMedPubMedCentral Aksu F, Capan N, Aksu K, et al. C-reactive protein levels are raised in stable chronic obstructive pulmonary disease patients independent of smoking behavior and biomass exposure. J Thorac Dis. 2013;5(4):414–21.PubMedPubMedCentral
10.
go back to reference Ólafsdóttir IS, Gíslason T, Gudnason V, et al. CRP is associated with lung function decline in men but not women: a prospective study. Respir Med. 2013;107(1):91–7.PubMedCrossRef Ólafsdóttir IS, Gíslason T, Gudnason V, et al. CRP is associated with lung function decline in men but not women: a prospective study. Respir Med. 2013;107(1):91–7.PubMedCrossRef
11.
go back to reference Emami Ardestani M, Zaerin O. Role of serum interleukin 6, albumin and C-reactive protein in COPD patients. Tanaffos. 2015;14(2):134–40.PubMedPubMedCentral Emami Ardestani M, Zaerin O. Role of serum interleukin 6, albumin and C-reactive protein in COPD patients. Tanaffos. 2015;14(2):134–40.PubMedPubMedCentral
13.
go back to reference Garshick E, Stolzmann KL, Gagnon DR, Morse LR, Brown R. Systemic inflammation and reduced pulmonary function in chronic spinal cord injury. PM R. 2011;3(5):433–9.PubMedPubMedCentralCrossRef Garshick E, Stolzmann KL, Gagnon DR, Morse LR, Brown R. Systemic inflammation and reduced pulmonary function in chronic spinal cord injury. PM R. 2011;3(5):433–9.PubMedPubMedCentralCrossRef
14.
go back to reference Hart JE, Morse L, Tun CG, Brown R, Garshick E. Cross-sectional associations of pulmonary function with systemic inflammation and oxidative stress in individuals with chronic spinal cord injury. J Spinal Cord Med. 2016;39(3):344–52.PubMedPubMedCentralCrossRef Hart JE, Morse L, Tun CG, Brown R, Garshick E. Cross-sectional associations of pulmonary function with systemic inflammation and oxidative stress in individuals with chronic spinal cord injury. J Spinal Cord Med. 2016;39(3):344–52.PubMedPubMedCentralCrossRef
15.
go back to reference Gläser S, Ittermann T, Koch B, et al. Airflow limitation, lung volumes and systemic inflammation in a general population. Eur Respir J. 2012;39(1):29–37.PubMedCrossRef Gläser S, Ittermann T, Koch B, et al. Airflow limitation, lung volumes and systemic inflammation in a general population. Eur Respir J. 2012;39(1):29–37.PubMedCrossRef
16.
go back to reference Rasmussen F, Mikkelsen D, Hancox RJ, et al. High-sensitive C-reactive protein is associated with reduced lung function in young adults. Eur Respir J. 2009;33(2):382–8.PubMedCrossRef Rasmussen F, Mikkelsen D, Hancox RJ, et al. High-sensitive C-reactive protein is associated with reduced lung function in young adults. Eur Respir J. 2009;33(2):382–8.PubMedCrossRef
17.
go back to reference Zhang P, Wu HM, Shen QY, Liu RY, Qi XM. Associations of pulmonary function with serum biomarkers and dialysis adequacy in patients undergoing peritoneal dialysis. Clin Exp Nephrol. 2016;20(6):951–9.PubMedCrossRef Zhang P, Wu HM, Shen QY, Liu RY, Qi XM. Associations of pulmonary function with serum biomarkers and dialysis adequacy in patients undergoing peritoneal dialysis. Clin Exp Nephrol. 2016;20(6):951–9.PubMedCrossRef
18.
go back to reference Shaaban R, Kony S, Driss F, et al. Change in C-reactive protein levels and FEV1 decline: a longitudinal population-based study. Respir Med. 2006;100(12):2112–20.PubMedCrossRef Shaaban R, Kony S, Driss F, et al. Change in C-reactive protein levels and FEV1 decline: a longitudinal population-based study. Respir Med. 2006;100(12):2112–20.PubMedCrossRef
19.
go back to reference Kalhan R, Tran BT, Colangelo LA, et al. Systemic inflammation in young adults is associated with abnormal lung function in middle age. PLoS One. 2010;5(7):e11431.PubMedPubMedCentralCrossRef Kalhan R, Tran BT, Colangelo LA, et al. Systemic inflammation in young adults is associated with abnormal lung function in middle age. PLoS One. 2010;5(7):e11431.PubMedPubMedCentralCrossRef
20.
go back to reference Ahmadi-Abhari S, Kaptoge S, Luben RN, Wareham NJ, Khaw KT. Longitudinal association of C-reactive protein and lung function over 13 years: the EPIC-Norfolk study. Am J Epidemiol. 2014;179(1):48–56.PubMedCrossRef Ahmadi-Abhari S, Kaptoge S, Luben RN, Wareham NJ, Khaw KT. Longitudinal association of C-reactive protein and lung function over 13 years: the EPIC-Norfolk study. Am J Epidemiol. 2014;179(1):48–56.PubMedCrossRef
21.
go back to reference Donaldson GC, Seemungal TA, Patel IS, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005;128(4):1995–2004.PubMedCrossRef Donaldson GC, Seemungal TA, Patel IS, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005;128(4):1995–2004.PubMedCrossRef
22.
go back to reference Fogarty AW, Jones S, Britton JR, Lewis SA, McKeever TM. Systemic inflammation and decline in lung function in a general population: a prospective study. Thorax. 2007;62(6):515–20.PubMedPubMedCentralCrossRef Fogarty AW, Jones S, Britton JR, Lewis SA, McKeever TM. Systemic inflammation and decline in lung function in a general population: a prospective study. Thorax. 2007;62(6):515–20.PubMedPubMedCentralCrossRef
23.
go back to reference Jiang R, Burke GL, Enright PL, et al. Inflammatory markers and longitudinal lung function decline in the elderly. Am J Epidemiol. 2008;168(6):602–10.PubMedPubMedCentralCrossRef Jiang R, Burke GL, Enright PL, et al. Inflammatory markers and longitudinal lung function decline in the elderly. Am J Epidemiol. 2008;168(6):602–10.PubMedPubMedCentralCrossRef
24.
go back to reference Hancox RJ, Gray AR, Sears MR, Poulton R. Systemic inflammation and lung function: a longitudinal analysis. Respir Med. 2016;111:54–9.PubMedCrossRef Hancox RJ, Gray AR, Sears MR, Poulton R. Systemic inflammation and lung function: a longitudinal analysis. Respir Med. 2016;111:54–9.PubMedCrossRef
25.
go back to reference Frost F, Roach MJ, Kushner I, Schreiber P. Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(2):312–7.PubMedCrossRef Frost F, Roach MJ, Kushner I, Schreiber P. Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(2):312–7.PubMedCrossRef
26.
go back to reference Jones LM, Legge M, Goulding A. Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil. 2003;84(7):1068–71.PubMedCrossRef Jones LM, Legge M, Goulding A. Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil. 2003;84(7):1068–71.PubMedCrossRef
27.
go back to reference Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003;40(Suppl 1):S183–6.PubMedCrossRef Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003;40(Suppl 1):S183–6.PubMedCrossRef
28.
go back to reference Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil. 2007;86(2):142–52.PubMedCrossRef Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil. 2007;86(2):142–52.PubMedCrossRef
29.
go back to reference Nelson MD, Widman LM, Abresch RT, et al. Metabolic syndrome in adolescents with spinal cord dysfunction. J Spinal Cord Med. 2007;30(Suppl 1):S127–39.PubMedCrossRef Nelson MD, Widman LM, Abresch RT, et al. Metabolic syndrome in adolescents with spinal cord dysfunction. J Spinal Cord Med. 2007;30(Suppl 1):S127–39.PubMedCrossRef
30.
go back to reference Segal JL, Gonzales E, Yousefi S, Jamshidipour L, Brunnemann SR. Circulating levels of IL-2R, ICAM-1, and IL-6 in spinal cord injuries. Arch Phys Med Rehabil. 1997;78(1):44–7.PubMedCrossRef Segal JL, Gonzales E, Yousefi S, Jamshidipour L, Brunnemann SR. Circulating levels of IL-2R, ICAM-1, and IL-6 in spinal cord injuries. Arch Phys Med Rehabil. 1997;78(1):44–7.PubMedCrossRef
31.
go back to reference Spungen AM, Adkins RH, Stewart CA, et al. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol. 2003;95(6):2398–407.PubMedCrossRef Spungen AM, Adkins RH, Stewart CA, et al. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol. 2003;95(6):2398–407.PubMedCrossRef
32.
go back to reference Morse LR, Stolzmann K, Nguyen HP, et al. Association between mobility mode and C-reactive protein levels in men with chronic spinal cord injury. Arch Phys Med Rehabil. 2008;89(4):726–31.PubMedPubMedCentralCrossRef Morse LR, Stolzmann K, Nguyen HP, et al. Association between mobility mode and C-reactive protein levels in men with chronic spinal cord injury. Arch Phys Med Rehabil. 2008;89(4):726–31.PubMedPubMedCentralCrossRef
33.
go back to reference Standardization of Spirometry, 1994 Update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):1107–36.CrossRef Standardization of Spirometry, 1994 Update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):1107–36.CrossRef
34.
35.
go back to reference Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159(1):179–87.PubMedCrossRef Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159(1):179–87.PubMedCrossRef
36.
go back to reference Redlich CA, Tarlo SM, Hankinson JL, Townsend MC, Eschenbacher WL. Official American Thoracic Society technical standards: spirometry in the occupational setting. Am J Respir Crit Care Med. 2014;189(8):984–94.CrossRef Redlich CA, Tarlo SM, Hankinson JL, Townsend MC, Eschenbacher WL. Official American Thoracic Society technical standards: spirometry in the occupational setting. Am J Respir Crit Care Med. 2014;189(8):984–94.CrossRef
37.
go back to reference Kirshblum SC, Waring W, Biering-Sorensen F, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34(6):547–54.PubMedPubMedCentralCrossRef Kirshblum SC, Waring W, Biering-Sorensen F, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34(6):547–54.PubMedPubMedCentralCrossRef
38.
go back to reference Goldstein RL, Walia P, Teylan M, et al. Clinical factors associated with C-reactive protein in chronic spinal cord injury. Spinal Cord. 1 August 2017; doi:10.1038/sc.2017.81 . Goldstein RL, Walia P, Teylan M, et al. Clinical factors associated with C-reactive protein in chronic spinal cord injury. Spinal Cord. 1 August 2017; doi:10.​1038/​sc.​2017.​81 .
39.
go back to reference Ferrucci L, Penninx BW, Volpato S, et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc. 2002;50(12):1947–54.PubMedCrossRef Ferrucci L, Penninx BW, Volpato S, et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc. 2002;50(12):1947–54.PubMedCrossRef
40.
go back to reference Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119(6):526 e9–17.CrossRef Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119(6):526 e9–17.CrossRef
41.
go back to reference Drummond MJ, Timmerman KL, Markofski MM, et al. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol. 2013;305(3):R216–23.PubMedPubMedCentralCrossRef Drummond MJ, Timmerman KL, Markofski MM, et al. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol. 2013;305(3):R216–23.PubMedPubMedCentralCrossRef
42.
go back to reference Aleman H, Esparza J, Ramirez FA, Astiazaran H, Payette H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing. 2011;40(4):469–75.PubMedCrossRef Aleman H, Esparza J, Ramirez FA, Astiazaran H, Payette H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing. 2011;40(4):469–75.PubMedCrossRef
Metadata
Title
FEV1 and FVC and systemic inflammation in a spinal cord injury cohort
Authors
Jaime E. Hart
Rebekah Goldstein
Palak Walia
Merilee Teylan
Antonio Lazzari
Carlos G. Tun
Eric Garshick
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2017
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-017-0459-6

Other articles of this Issue 1/2017

BMC Pulmonary Medicine 1/2017 Go to the issue