Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2017

Open Access 01-12-2017 | Research article

Air pollution exposure is associated with MRSA acquisition in young U.S. children with cystic fibrosis

Authors: Kevin J. Psoter, Anneclaire J. De Roos, Jon Wakefield, Jonathan D. Mayer, Margaret Rosenfeld

Published in: BMC Pulmonary Medicine | Issue 1/2017

Login to get access

Abstract

Background

The role of air pollution in increasing susceptibility to respiratory tract infections in the cystic fibrosis (CF) population has not been well described. We recently demonstrated that chronic PM2.5 exposure is associated with an increased risk of initial Pseudomonas aeruginosa acquisition in young children with CF. The purpose of this study was to determine whether PM2.5 exposure is a risk factor for acquisition of other respiratory pathogens in young children with CF.

Methods

We conducted a retrospective study of initial acquisition of methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA), Stenotrophomonas maltophilia and Achromobacter xylosoxidans in U.S. children <6 years of age with CF using the CF Foundation Patient Registry, 2003–2009. Multivariable Weibull regression with interval-censored outcomes was used to evaluate the association of PM2.5 concentration in the year prior to birth and risk of acquisition of each organism.

Results

During follow-up 63%, 17%, 24%, and 5% of children acquired MSSA, MRSA, S. maltophilia, and A. xylosoxidans, respectively. A 10 μg/m3 increase in PM2.5 exposure was associated with a 68% increased risk of MRSA acquisition (Hazard Ratio: 1.68; 95% Confidence Interval: 1.24, 2.27). PM2.5 was not associated with acquisition of other respiratory pathogens.

Conclusions

Fine particulate matter is an independent risk factor for initial MRSA acquisition in young children with CF. These results support the increasing evidence that air pollution contributes to pulmonary morbidities in the CF community.
Literature
1.
go back to reference Long FR, Williams RS, Adler BH, Castile RG. Comparison of quiet breathing and controlled ventilation in the high-resolution CT assessment of airway disease in infants with cystic fibrosis. Pediatr Radiol. 2005;35:1075–80.CrossRefPubMed Long FR, Williams RS, Adler BH, Castile RG. Comparison of quiet breathing and controlled ventilation in the high-resolution CT assessment of airway disease in infants with cystic fibrosis. Pediatr Radiol. 2005;35:1075–80.CrossRefPubMed
2.
go back to reference Long FR, Williams RS, Castile RG. Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr. 2004;144:154–61.CrossRefPubMed Long FR, Williams RS, Castile RG. Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr. 2004;144:154–61.CrossRefPubMed
3.
go back to reference Martinez TM, Llapur CJ, Williams TH, Coates C, Gunderman R, Cohen MD, et al. High-resolution computed tomography imaging of airway disease in infants with cystic fibrosis. Am J Respir Crit Care Med. 2005;172:1133–8.CrossRefPubMedPubMedCentral Martinez TM, Llapur CJ, Williams TH, Coates C, Gunderman R, Cohen MD, et al. High-resolution computed tomography imaging of airway disease in infants with cystic fibrosis. Am J Respir Crit Care Med. 2005;172:1133–8.CrossRefPubMedPubMedCentral
4.
go back to reference Hoo AF, Thia LP, Nguyen TT, Bush A, Chudleigh J, Lum S, et al. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax. 2012;67:874–81.CrossRefPubMed Hoo AF, Thia LP, Nguyen TT, Bush A, Chudleigh J, Lum S, et al. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax. 2012;67:874–81.CrossRefPubMed
5.
go back to reference Mott LS, Park J, Murray CP, Gangell CL, de Klerk NH, Robinson PJ, et al. Progression of early structural lung disease in young children with cystic fibrosis assessed using CT. Thorax. 2012;67:509–16.CrossRefPubMed Mott LS, Park J, Murray CP, Gangell CL, de Klerk NH, Robinson PJ, et al. Progression of early structural lung disease in young children with cystic fibrosis assessed using CT. Thorax. 2012;67:509–16.CrossRefPubMed
6.
go back to reference Goeminne PC, Kicinski M, Vermeulen F, Fierens F, De Boeck K, Nemery B, et al. Impact of air pollution on cystic fibrosis pulmonary exacerbations: a case-crossover analysis. Chest. 2013;143:946–54.CrossRefPubMed Goeminne PC, Kicinski M, Vermeulen F, Fierens F, De Boeck K, Nemery B, et al. Impact of air pollution on cystic fibrosis pulmonary exacerbations: a case-crossover analysis. Chest. 2013;143:946–54.CrossRefPubMed
7.
go back to reference Farhat SC, Almeida MB, Silva-Filho LV, Farhat J, Rodrigues JC, Braga AL. Ozone is associated with an increased risk of respiratory exacerbations in patients with cystic fibrosis. Chest. 2013;144:1186–92.CrossRefPubMed Farhat SC, Almeida MB, Silva-Filho LV, Farhat J, Rodrigues JC, Braga AL. Ozone is associated with an increased risk of respiratory exacerbations in patients with cystic fibrosis. Chest. 2013;144:1186–92.CrossRefPubMed
8.
go back to reference Goss CH, Newsom SA, Schildcrout JS, Sheppard L, Kaufman JD. Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med. 2004;169:816–21.CrossRefPubMed Goss CH, Newsom SA, Schildcrout JS, Sheppard L, Kaufman JD. Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med. 2004;169:816–21.CrossRefPubMed
9.
go back to reference Collaco JM, McGready J, Green DM, Naughton KM, Watson CP, Shields T, et al. Effect of temperature on cystic fibrosis lung disease and infections: a replicated cohort study. PLoS One. 2011;6:e27784.CrossRefPubMedPubMedCentral Collaco JM, McGready J, Green DM, Naughton KM, Watson CP, Shields T, et al. Effect of temperature on cystic fibrosis lung disease and infections: a replicated cohort study. PLoS One. 2011;6:e27784.CrossRefPubMedPubMedCentral
10.
go back to reference Psoter KJ, De Roos AJ, Mayer JD, Kaufman JD, Wakefield J, Rosenfeld M. Fine particulate matter exposure and initial Pseudomonas Aeruginosa acquisition in cystic fibrosis. Ann Am Thorac Soc. 2015;12:385–91.CrossRefPubMed Psoter KJ, De Roos AJ, Mayer JD, Kaufman JD, Wakefield J, Rosenfeld M. Fine particulate matter exposure and initial Pseudomonas Aeruginosa acquisition in cystic fibrosis. Ann Am Thorac Soc. 2015;12:385–91.CrossRefPubMed
11.
go back to reference Knapp EA, Fink AK, Goss CH, Sewall A, Ostrenga J, Dowd C, et al. The Cystic Fibrosis Foundation patient registry. Design and methods of a National Observational Disease Registry. Ann Am Thorac Soc. 2016;13:1173–9.CrossRefPubMed Knapp EA, Fink AK, Goss CH, Sewall A, Ostrenga J, Dowd C, et al. The Cystic Fibrosis Foundation patient registry. Design and methods of a National Observational Disease Registry. Ann Am Thorac Soc. 2016;13:1173–9.CrossRefPubMed
12.
go back to reference Cystic Fibrosis Foundation, Borowitz D, Robinson KA, Rosenfeld M, Davis SD, Sabadosa KA, et al. Cystic Fibrosis Foundation evidence-based guidelines for management of infants with cystic fibrosis. J Pediatr. 2009;155:S73–93.CrossRef Cystic Fibrosis Foundation, Borowitz D, Robinson KA, Rosenfeld M, Davis SD, Sabadosa KA, et al. Cystic Fibrosis Foundation evidence-based guidelines for management of infants with cystic fibrosis. J Pediatr. 2009;155:S73–93.CrossRef
13.
go back to reference Psoter KJ, Rosenfeld M, De Roos AJ, Mayer JD, Wakefield J. Differential geographical risk of initial Pseudomonas Aeruginosa acquisition in young US children with cystic fibrosis. Am J Epidemiol. 2014;179:1503–13.CrossRefPubMed Psoter KJ, Rosenfeld M, De Roos AJ, Mayer JD, Wakefield J. Differential geographical risk of initial Pseudomonas Aeruginosa acquisition in young US children with cystic fibrosis. Am J Epidemiol. 2014;179:1503–13.CrossRefPubMed
15.
go back to reference R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. p. 16. R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. p. 16.
16.
go back to reference Goss CH, Muhlebach MS. Review: Staphylococcus Aureus and MRSA in cystic fibrosis. J Cyst Fibros. 2011;10:298–306.CrossRefPubMed Goss CH, Muhlebach MS. Review: Staphylococcus Aureus and MRSA in cystic fibrosis. J Cyst Fibros. 2011;10:298–306.CrossRefPubMed
17.
go back to reference Dasenbrook EC, Checkley W, Merlo CA, Konstan MW, Lechtzin N, Boyle MP. Association between respiratory tract methicillin-resistant Staphylococcus Aureus and survival in cystic fibrosis. JAMA. 2010;303:2386–92.CrossRefPubMed Dasenbrook EC, Checkley W, Merlo CA, Konstan MW, Lechtzin N, Boyle MP. Association between respiratory tract methicillin-resistant Staphylococcus Aureus and survival in cystic fibrosis. JAMA. 2010;303:2386–92.CrossRefPubMed
18.
go back to reference Dasenbrook EC, Merlo CA, Diener-West M, Lechtzin N, Boyle MP. Persistent methicillin-resistant Staphylococcus Aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med. 2008;178:814–21.CrossRefPubMed Dasenbrook EC, Merlo CA, Diener-West M, Lechtzin N, Boyle MP. Persistent methicillin-resistant Staphylococcus Aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med. 2008;178:814–21.CrossRefPubMed
19.
go back to reference Cystic Fibrosis Foundation. Patient registry 2008 annual report. Bethesda: Cystic Fibrosis Foundation; 2009. Cystic Fibrosis Foundation. Patient registry 2008 annual report. Bethesda: Cystic Fibrosis Foundation; 2009.
20.
go back to reference Muhlebach MS, Heltshe SL, Popowitch EB, Miller MB, Thompson V, Kloster M, et al. Multicenter observational study on factors and outcomes associated with various Methicillin-resistant Staphylococcus Aureus types in children with cystic fibrosis. Ann Am Thorac Soc. 2015;12:864–71.CrossRefPubMedPubMedCentral Muhlebach MS, Heltshe SL, Popowitch EB, Miller MB, Thompson V, Kloster M, et al. Multicenter observational study on factors and outcomes associated with various Methicillin-resistant Staphylococcus Aureus types in children with cystic fibrosis. Ann Am Thorac Soc. 2015;12:864–71.CrossRefPubMedPubMedCentral
21.
go back to reference Collaco JM, Raraigh KS, Appel LJ, Cutting GR. Respiratory pathogens mediate the association between lung function and temperature in cystic fibrosis. J Cyst Fibros. 2016;15:794–801.CrossRefPubMed Collaco JM, Raraigh KS, Appel LJ, Cutting GR. Respiratory pathogens mediate the association between lung function and temperature in cystic fibrosis. J Cyst Fibros. 2016;15:794–801.CrossRefPubMed
22.
go back to reference Kamdar O, Le W, Zhang J, Ghio AJ, Rosen GD, Upadhyay D. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium. FEBS Lett. 2008;582:3601–6.CrossRefPubMedPubMedCentral Kamdar O, Le W, Zhang J, Ghio AJ, Rosen GD, Upadhyay D. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium. FEBS Lett. 2008;582:3601–6.CrossRefPubMedPubMedCentral
23.
go back to reference Geiser M, Stoeger T, Casaulta M, Chen SZ, Semmler-Behnke M, Bolle I, et al. Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Particle and Fibre Toxicology. 2014;11:19.CrossRefPubMedPubMedCentral Geiser M, Stoeger T, Casaulta M, Chen SZ, Semmler-Behnke M, Bolle I, et al. Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Particle and Fibre Toxicology. 2014;11:19.CrossRefPubMedPubMedCentral
24.
go back to reference Qu F, Qin XQ, Cui YR, Xiang Y, Tan YR, Liu HJ, et al. Ozone stress down-regulates the expression of cystic fibrosis transmembrane conductance regulator in human bronchial epithelial cells. Chem Biol Interact. 2009;179:219–26.CrossRefPubMed Qu F, Qin XQ, Cui YR, Xiang Y, Tan YR, Liu HJ, et al. Ozone stress down-regulates the expression of cystic fibrosis transmembrane conductance regulator in human bronchial epithelial cells. Chem Biol Interact. 2009;179:219–26.CrossRefPubMed
25.
go back to reference Jassal MS, Yu AM, Bhatia R, Keens TG, Davidson Ward SL. Effect of residential proximity to major roadways on cystic fibrosis exacerbations. Int J Environ Health Res. 2013;23:119–31.CrossRefPubMed Jassal MS, Yu AM, Bhatia R, Keens TG, Davidson Ward SL. Effect of residential proximity to major roadways on cystic fibrosis exacerbations. Int J Environ Health Res. 2013;23:119–31.CrossRefPubMed
26.
go back to reference Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, et al. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect. 2013;121:267–373.CrossRefPubMedPubMedCentral Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, et al. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect. 2013;121:267–373.CrossRefPubMedPubMedCentral
27.
go back to reference Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res. 2012;117:100–11.CrossRefPubMed Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res. 2012;117:100–11.CrossRefPubMed
28.
go back to reference Kwinta P, Pietrzyk JJ. Preterm birth and respiratory disease in later life. Expert Rev Respir Med. 2010;4:593–604.CrossRefPubMed Kwinta P, Pietrzyk JJ. Preterm birth and respiratory disease in later life. Expert Rev Respir Med. 2010;4:593–604.CrossRefPubMed
29.
go back to reference Pino P, Walter T, Oyarzun M, Villegas R, Romieu I. Fine particulate matter and wheezing illnesses in the first year of life. Epidemiology. 2004;15:702–8.CrossRefPubMed Pino P, Walter T, Oyarzun M, Villegas R, Romieu I. Fine particulate matter and wheezing illnesses in the first year of life. Epidemiology. 2004;15:702–8.CrossRefPubMed
30.
go back to reference Karr CJ, Demers PA, Koehoorn MW, Lencar CC, Tamburic L, Brauer M. Influence of ambient air pollutant sources on clinical encounters for infant bronchiolitis. Am J Respir Crit Care Med. 2009;180:995–1001. 17CrossRefPubMed Karr CJ, Demers PA, Koehoorn MW, Lencar CC, Tamburic L, Brauer M. Influence of ambient air pollutant sources on clinical encounters for infant bronchiolitis. Am J Respir Crit Care Med. 2009;180:995–1001. 17CrossRefPubMed
31.
go back to reference Collaco JM, Blackman SM, McGready J, Naughton KM, Cutting GR. Quantification of the relative contribution of environmental and genetic factors to variation in cystic fibrosis lung function. J Pediatr. 2010;157:802–7.CrossRefPubMedPubMedCentral Collaco JM, Blackman SM, McGready J, Naughton KM, Cutting GR. Quantification of the relative contribution of environmental and genetic factors to variation in cystic fibrosis lung function. J Pediatr. 2010;157:802–7.CrossRefPubMedPubMedCentral
32.
go back to reference Green DM, Collaco JM, McDougal KE, Naughton KM, Blackman SM, Cutting GR. Heritability of respiratory infection with Pseudomonas Aeruginosa in cystic fibrosis. J Pediatr. 2012;161:290–5.CrossRefPubMedPubMedCentral Green DM, Collaco JM, McDougal KE, Naughton KM, Blackman SM, Cutting GR. Heritability of respiratory infection with Pseudomonas Aeruginosa in cystic fibrosis. J Pediatr. 2012;161:290–5.CrossRefPubMedPubMedCentral
33.
go back to reference Ramsay KA, Stockwell RE, Bell SC, Kidd TJ. Infection in cystic fibrosis: impact of the environment and climate. Ex Rev Resp Med. 2016;10:505–19.CrossRef Ramsay KA, Stockwell RE, Bell SC, Kidd TJ. Infection in cystic fibrosis: impact of the environment and climate. Ex Rev Resp Med. 2016;10:505–19.CrossRef
34.
go back to reference Psoter KJ, De Roos AJ, Wakefield J, Mayer J, Rosenfeld M. Season is associated with Pseudomonas Aeruginosa acquisition in young children with cystic fibrosis. Clin Microbiol Infect. 2013;19:E483–9.CrossRefPubMed Psoter KJ, De Roos AJ, Wakefield J, Mayer J, Rosenfeld M. Season is associated with Pseudomonas Aeruginosa acquisition in young children with cystic fibrosis. Clin Microbiol Infect. 2013;19:E483–9.CrossRefPubMed
35.
go back to reference Rosenfeld M, Emerson J, Accurso F, Armstrong D, Castile R, Grimwood K, et al. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol. 1999;28:321–8.CrossRefPubMed Rosenfeld M, Emerson J, Accurso F, Armstrong D, Castile R, Grimwood K, et al. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol. 1999;28:321–8.CrossRefPubMed
Metadata
Title
Air pollution exposure is associated with MRSA acquisition in young U.S. children with cystic fibrosis
Authors
Kevin J. Psoter
Anneclaire J. De Roos
Jon Wakefield
Jonathan D. Mayer
Margaret Rosenfeld
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2017
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-017-0449-8

Other articles of this Issue 1/2017

BMC Pulmonary Medicine 1/2017 Go to the issue