Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2016

Open Access 01-12-2016 | Research article

Later emergence of acquired drug resistance and its effect on treatment outcome in patients treated with Standard Short-Course Chemotherapy for tuberculosis

Authors: Jingtao Gao, Yan Ma, Jian Du, Guofeng Zhu, Shouyong Tan, Yanyong Fu, Liping Ma, Lianying Zhang, Feiying Liu, Daiyu Hu, Yanling Zhang, Xiangqun Li, Liang Li, Qi Li

Published in: BMC Pulmonary Medicine | Issue 1/2016

Login to get access

Abstract

Backgrounds

The failure of current Standard Short-Course Chemotherapy (SCC) in new and previously treated cases with tuberculosis (TB) was mainly due to drug resistance development. But little is known on the characteristics of acquired drug resistant TB during SCC and its correlation with SCC failure. The objective of the study is to explore the traits of acquired drug resistant TB emergence and evaluate their impacts on treatment outcomes.

Methods

A prospective observational study was performed on newly admitted smear positive pulmonary TB (PTB) cases without drug resistance pretreatment treated with SCC under China’s National TB Control Program (NTP) condition from 2008 to 2010. Enrolled cases were followed up through sputum smear, culture and drug susceptibility testing (DST) at the end of 1, 2, and 5 months after treatment initiation. The effect factors of early or late emergence of acquired drug resistant TB , such as acquired drug resistance patterns, the number of acquired resistant drugs and previous treatment history were investigated by multivariate logistic regression; and the impact of acquired drug resistant TB emergence on treatment failure were further evaluated.

Results

Among 1671 enrolled new and previously treated cases with SCC, 62 (3.7 %) acquired different patterns of drug resistant TB at early period within 2 months or later around 3–5 months of treatment. Previously treated cases were more likely to develop acquired multi-drug resistant TB (MDR-TB) (OR, 3.8; 95 %CI, 1.4–10.4; P = 0.015). Additionally, acquired MDR-TB cases were more likely to emerge at later period around 3-5 months after treatment starting than that of non-MDR-TB mainly appeared within 2 months (OR, 8.3; 95 %CI, 1.7–39.9; P = 0.008). Treatment failure was associated with late acquired drug resistant TB emergence (OR, 25.7; 95 %CI, 4.3–153.4; P < 0.001) with the reference of early acquired drug resistant TB emergence.

Conclusions

This study demonstrates that later development of acquired drug resistant TB during SCC is liable to suffer treatment failure and acquired MDR-TB pattern may be one of the possible causes.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Global tuberculosis report 2013. Geneva: WHO; 2013. WHO/HTM/TB/ 2013. 11. World Health Organization. Global tuberculosis report 2013. Geneva: WHO; 2013. WHO/HTM/TB/ 2013. 11.
2.
go back to reference World Health Organization. Treatment of tuberculosis guidelines. 4th ed. Geneva: WHO; 2010. WHO/HTM/STB/2009.420. World Health Organization. Treatment of tuberculosis guidelines. 4th ed. Geneva: WHO; 2010. WHO/HTM/STB/2009.420.
3.
go back to reference Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999;3(10):S231–79.PubMed Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999;3(10):S231–79.PubMed
4.
go back to reference Hong Kong Chest Service; British Medical Research Council. Controlled trial of 4 three-times-weekly regimens and a daily regimen all given for 6 months for pulmonary tuberculosis. Second report: the results up to 24 months. Tubercle. 1982;63(2):89–98.CrossRef Hong Kong Chest Service; British Medical Research Council. Controlled trial of 4 three-times-weekly regimens and a daily regimen all given for 6 months for pulmonary tuberculosis. Second report: the results up to 24 months. Tubercle. 1982;63(2):89–98.CrossRef
5.
go back to reference Service HKC, Council BMR. Controlled trial of 2, 4, and 6 months of pyrazinamide in 6-month, three-times-weekly regimens for smear-positive pulmonary of isoniazid, rifampicin, and pyrazinamide: results at 30 months. Am Rev Respir Dis. 1991;143(4):700–6. Service HKC, Council BMR. Controlled trial of 2, 4, and 6 months of pyrazinamide in 6-month, three-times-weekly regimens for smear-positive pulmonary of isoniazid, rifampicin, and pyrazinamide: results at 30 months. Am Rev Respir Dis. 1991;143(4):700–6.
6.
go back to reference Service ST, Council BMR. Clinical trial of three 6-month regimens of chemotherapy given intermittently in the continuation phase in the treatment of pulmonary tuberculosis. Am Rev Respir Dis. 1985;132(2):374–8. Service ST, Council BMR. Clinical trial of three 6-month regimens of chemotherapy given intermittently in the continuation phase in the treatment of pulmonary tuberculosis. Am Rev Respir Dis. 1985;132(2):374–8.
7.
go back to reference Council K-Z-BMR. Controlled clinical trial of levamisole in short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1989;140(4):990–5.CrossRef Council K-Z-BMR. Controlled clinical trial of levamisole in short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1989;140(4):990–5.CrossRef
8.
go back to reference Espinal MA, Kim SJ, Suarez PG, Kam KM, Khomenko AG, Migiori GB, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA. 2000;283(19):2537–45.CrossRefPubMed Espinal MA, Kim SJ, Suarez PG, Kam KM, Khomenko AG, Migiori GB, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA. 2000;283(19):2537–45.CrossRefPubMed
9.
go back to reference World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: WHO; 2014. WHO/ HTM/ TB/ 2014. 11. World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: WHO; 2014. WHO/ HTM/ TB/ 2014. 11.
10.
go back to reference World Health Organization. Treatment of tuberculosis: guidelines for national programmes. Geneva: WHO; 2003. WHO/CDS/TB/2003.313. World Health Organization. Treatment of tuberculosis: guidelines for national programmes. Geneva: WHO; 2003. WHO/CDS/TB/2003.313.
11.
go back to reference Enarson DA, Rieder HL, Arnadottir T, Trebucq A. Management of tuberculosis: a guide for low income countries. 5th ed. Paris: International Union Against Tuberculosis and Lung Disease; 2000. Enarson DA, Rieder HL, Arnadottir T, Trebucq A. Management of tuberculosis: a guide for low income countries. 5th ed. Paris: International Union Against Tuberculosis and Lung Disease; 2000.
12.
go back to reference Mak A, Thomas A, Del Granado M, Zaleskis R, Mouzafarova N, Menzies D. Influence of multidrug resistance on tuberculosis treatment outcomes with standardized regimens. Am J Respir Crit Care Med. 2008;178(3):306–12.CrossRefPubMed Mak A, Thomas A, Del Granado M, Zaleskis R, Mouzafarova N, Menzies D. Influence of multidrug resistance on tuberculosis treatment outcomes with standardized regimens. Am J Respir Crit Care Med. 2008;178(3):306–12.CrossRefPubMed
13.
go back to reference Ministry of Health. Guidelines for implementing the national tuberculosis control program in China. Beijing: Peking Union Medical College Press; 2008. Ministry of Health. Guidelines for implementing the national tuberculosis control program in China. Beijing: Peking Union Medical College Press; 2008.
14.
go back to reference Liu Y, Jiang G, Zhao L, Fu Y, Li Y, Bi Z, et al. Drug resistance of mycobacterium tuberculosis in a nationwide epidemiological survey in China in the year of 2000. Zhonghua Jie He He Hu Xi Za Zazhi. 2002;25(4):224–7. Liu Y, Jiang G, Zhao L, Fu Y, Li Y, Bi Z, et al. Drug resistance of mycobacterium tuberculosis in a nationwide epidemiological survey in China in the year of 2000. Zhonghua Jie He He Hu Xi Za Zazhi. 2002;25(4):224–7.
15.
go back to reference Kent P, Kubica G. Public health mycobacteriology: a guide for the level III laboratory. Atlanta: Centers for Disease Control; 1985. Kent P, Kubica G. Public health mycobacteriology: a guide for the level III laboratory. Atlanta: Centers for Disease Control; 1985.
16.
go back to reference Han T. Effectiveness of standard short-course chemotherapy for treating tuberculosis and the impact of drug resistance on its outcome. Int J Evid Based Healthc. 2006;4(2):101–17.PubMed Han T. Effectiveness of standard short-course chemotherapy for treating tuberculosis and the impact of drug resistance on its outcome. Int J Evid Based Healthc. 2006;4(2):101–17.PubMed
17.
go back to reference Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–70.CrossRefPubMed Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012;366(23):2161–70.CrossRefPubMed
18.
go back to reference Tang S, Tan S, Yao L, Li F, Li L, Guo X, et al. Risk factors for poor treatment outcomes in patients with MDR-TB and XDR-TB in China: retrospective multi-center investigation. PLoS ONE. 2013;8(12):e82943.PubMedCentralCrossRefPubMed Tang S, Tan S, Yao L, Li F, Li L, Guo X, et al. Risk factors for poor treatment outcomes in patients with MDR-TB and XDR-TB in China: retrospective multi-center investigation. PLoS ONE. 2013;8(12):e82943.PubMedCentralCrossRefPubMed
19.
go back to reference Liu Q, Zhu L, Shao Y, Song H, Li G, Zhou Y, et al. Rates and risk factors for drug resistance tuberculosis in Northeastern China. BMC Public Health. 2013;13:1171–7.PubMedCentralCrossRefPubMed Liu Q, Zhu L, Shao Y, Song H, Li G, Zhou Y, et al. Rates and risk factors for drug resistance tuberculosis in Northeastern China. BMC Public Health. 2013;13:1171–7.PubMedCentralCrossRefPubMed
20.
go back to reference Rifat M, Milton AH, Hall J, Oldmeadow C, Islam MA, Husain A, et al. Development of multidrug resistant tuberculosis in Bangladesh: a case-control study on risk factors. PLoS ONE. 2014;9(8):e105214.PubMedCentralCrossRefPubMed Rifat M, Milton AH, Hall J, Oldmeadow C, Islam MA, Husain A, et al. Development of multidrug resistant tuberculosis in Bangladesh: a case-control study on risk factors. PLoS ONE. 2014;9(8):e105214.PubMedCentralCrossRefPubMed
21.
go back to reference Zhao P, Li XJ, Zhang SF, Wang XS, Liu CY. Social behaviour risk factors for drug resistant tuberculosis in mainland China: a meta-analysis. J Int Med Res. 2012;40(2):436–45.CrossRefPubMed Zhao P, Li XJ, Zhang SF, Wang XS, Liu CY. Social behaviour risk factors for drug resistant tuberculosis in mainland China: a meta-analysis. J Int Med Res. 2012;40(2):436–45.CrossRefPubMed
22.
go back to reference Espinal MA, Laserson K, Camacho M, Fusheng Z, Kim SJ, Tlali RE, et al. Determinants of drug-resistant tuberculosis: analysis of 11 countries. Int J Tuberc Lung Dis. 2001;5(10):887–93.PubMed Espinal MA, Laserson K, Camacho M, Fusheng Z, Kim SJ, Tlali RE, et al. Determinants of drug-resistant tuberculosis: analysis of 11 countries. Int J Tuberc Lung Dis. 2001;5(10):887–93.PubMed
23.
go back to reference Matthys F, Rigouts L, Sizaire V, Vezhnina N, Lecoq M, Golubeva V, et al. Outcomes after chemotherapy with WHO category IIregimen in a population with high prevalence of drug resistant tuberculosis. PLoS ONE. 2009;4(11):e7954.PubMedCentralCrossRefPubMed Matthys F, Rigouts L, Sizaire V, Vezhnina N, Lecoq M, Golubeva V, et al. Outcomes after chemotherapy with WHO category IIregimen in a population with high prevalence of drug resistant tuberculosis. PLoS ONE. 2009;4(11):e7954.PubMedCentralCrossRefPubMed
24.
go back to reference Seung KJ, Gelmanova IE, Perementin GG, Golubchikova VT, Pavlova VE, Sirotkina OB, et al. The effect of initial drug resistance on treatment response and acquired drug resistance during standardized short-course chemotherapy for tuberculosis. Clin Infect Dis. 2004;39(9):1321–8.CrossRefPubMed Seung KJ, Gelmanova IE, Perementin GG, Golubchikova VT, Pavlova VE, Sirotkina OB, et al. The effect of initial drug resistance on treatment response and acquired drug resistance during standardized short-course chemotherapy for tuberculosis. Clin Infect Dis. 2004;39(9):1321–8.CrossRefPubMed
25.
go back to reference Anuwatnonthakate A, Whitehead SJ, Varma JK, Silachamroon U, Kasetjaroen Y, Moolphate S, et al. Effect of mycobacterial drug resistance patterns on patient’ survival: a cohort study in Thailand. Glob J Health Sci. 2013;5(6):60–72.PubMed Anuwatnonthakate A, Whitehead SJ, Varma JK, Silachamroon U, Kasetjaroen Y, Moolphate S, et al. Effect of mycobacterial drug resistance patterns on patient’ survival: a cohort study in Thailand. Glob J Health Sci. 2013;5(6):60–72.PubMed
26.
go back to reference Choi H, Lee M, Chen RY, Kim Y, Yoon S, Joh JS, et al. Predictors of pulmonary tuberculosis treatment outcomes in South Korea: a prospective cohort study, 2005–2012. BMC Infect Dis. 2014;14:360.PubMedCentralCrossRefPubMed Choi H, Lee M, Chen RY, Kim Y, Yoon S, Joh JS, et al. Predictors of pulmonary tuberculosis treatment outcomes in South Korea: a prospective cohort study, 2005–2012. BMC Infect Dis. 2014;14:360.PubMedCentralCrossRefPubMed
27.
go back to reference Chang KC, Leung CC, Yew WW, Ho SC, Tam CM. A nested case-control study on treatment-related risk factor for early relapse of tuberculosis. Am J Respir Crit Care Med. 2004;170(10):1124–30.CrossRefPubMed Chang KC, Leung CC, Yew WW, Ho SC, Tam CM. A nested case-control study on treatment-related risk factor for early relapse of tuberculosis. Am J Respir Crit Care Med. 2004;170(10):1124–30.CrossRefPubMed
28.
go back to reference Seyoum B, Demissie M, Worku A, Bekele S, Aseffa A. Prevalence and drug resistance patterns of mycobacterium tuberculosis among new smear positive pulmonary tuberculosis patients in eastern Ethiopia. Tuberc Res Treat. 2014;2014:753492.PubMedCentralPubMed Seyoum B, Demissie M, Worku A, Bekele S, Aseffa A. Prevalence and drug resistance patterns of mycobacterium tuberculosis among new smear positive pulmonary tuberculosis patients in eastern Ethiopia. Tuberc Res Treat. 2014;2014:753492.PubMedCentralPubMed
29.
go back to reference Jordan TS, Davies PD. Clinical tuberculosis and treatment outcomes. Int J Tuberc Lung Dis. 2009;14(6):683–8. Jordan TS, Davies PD. Clinical tuberculosis and treatment outcomes. Int J Tuberc Lung Dis. 2009;14(6):683–8.
30.
go back to reference Hu Y, Jiang WL, Wang WB, Xu B. A-cohort study on the standard short-course chemotherapy program for drug resistant tuberculosis in the rural counties in Eastern China. Zhonghua Liu Xing Bing Xue Za Zhi. 2008;29(6):540–4.PubMed Hu Y, Jiang WL, Wang WB, Xu B. A-cohort study on the standard short-course chemotherapy program for drug resistant tuberculosis in the rural counties in Eastern China. Zhonghua Liu Xing Bing Xue Za Zhi. 2008;29(6):540–4.PubMed
31.
go back to reference Bang D, Andersen PH, Andersen AB, Thomsen V. Isoniazid-resistant tuberculosis in Denmark: mutations, transmission and treatment outcome. J Infect. 2010;60(6):452–7.CrossRefPubMed Bang D, Andersen PH, Andersen AB, Thomsen V. Isoniazid-resistant tuberculosis in Denmark: mutations, transmission and treatment outcome. J Infect. 2010;60(6):452–7.CrossRefPubMed
32.
go back to reference Jacobson KR, Theron D, Victor TC, Streicher EM, Warren RM, Murray MB. Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa. Clin Infect Dis. 2011;53(4):369–72.PubMedCentralCrossRefPubMed Jacobson KR, Theron D, Victor TC, Streicher EM, Warren RM, Murray MB. Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa. Clin Infect Dis. 2011;53(4):369–72.PubMedCentralCrossRefPubMed
33.
35.
go back to reference Maciel EL, Brioschi AP, Peres RL, Guidoni LM, Ribeiro FK, Hadad DJ, et al. Smoking and 2-month culture conversion during anti-tuberculosis treatment. Int J Tuberc Lung Dis. 2013;17(2):225–8.PubMedCentralCrossRefPubMed Maciel EL, Brioschi AP, Peres RL, Guidoni LM, Ribeiro FK, Hadad DJ, et al. Smoking and 2-month culture conversion during anti-tuberculosis treatment. Int J Tuberc Lung Dis. 2013;17(2):225–8.PubMedCentralCrossRefPubMed
36.
go back to reference Franke MF, Appleton SC, Bayona J, Arteaga F, Palacios E, Llaro K, et al. Risk factors and mortality associated with default from multidrug-resistant tuberculosis treatment. Clin Infect Dis. 2008;46(12):1844–51.PubMedCentralCrossRefPubMed Franke MF, Appleton SC, Bayona J, Arteaga F, Palacios E, Llaro K, et al. Risk factors and mortality associated with default from multidrug-resistant tuberculosis treatment. Clin Infect Dis. 2008;46(12):1844–51.PubMedCentralCrossRefPubMed
38.
go back to reference Kim HR, Hwang SS, Kim HJ, Lee SM, Yoo CG, Kim YW, et al. Impact of extensive drug resistance on treatment outcomes in Non-HIV-infected patients with multidrug-resistant tuberculosis. Clin Infect Dis. 2007;45(10):1290–5.CrossRefPubMed Kim HR, Hwang SS, Kim HJ, Lee SM, Yoo CG, Kim YW, et al. Impact of extensive drug resistance on treatment outcomes in Non-HIV-infected patients with multidrug-resistant tuberculosis. Clin Infect Dis. 2007;45(10):1290–5.CrossRefPubMed
39.
go back to reference Dalton T, Cegielski P, Akksilp S, Asencios L, Campos Caoili J, Cho SN, et al. Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet. 2012;380(9851):1406–17.CrossRefPubMed Dalton T, Cegielski P, Akksilp S, Asencios L, Campos Caoili J, Cho SN, et al. Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet. 2012;380(9851):1406–17.CrossRefPubMed
40.
go back to reference Lew W, Pai M, Oxlade O, Martin D, Menzies D. Initial drug resistance and tuberculosis treatment outcomes: systematic review and meta-analysis. Ann Intern Med. 2008;149(2):123–34.CrossRefPubMed Lew W, Pai M, Oxlade O, Martin D, Menzies D. Initial drug resistance and tuberculosis treatment outcomes: systematic review and meta-analysis. Ann Intern Med. 2008;149(2):123–34.CrossRefPubMed
41.
go back to reference Menzies D, Benedetti A, Paydar A, Royce S, Madhukar P, Burman W, et al. Standardized treatment of active tuberculosis in patients with previous treatment and /or with mono-resistance to isoniazid: a systematic review and meta-analysis. PLoS Med. 2009;6(9), e1000150.PubMedCentralCrossRefPubMed Menzies D, Benedetti A, Paydar A, Royce S, Madhukar P, Burman W, et al. Standardized treatment of active tuberculosis in patients with previous treatment and /or with mono-resistance to isoniazid: a systematic review and meta-analysis. PLoS Med. 2009;6(9), e1000150.PubMedCentralCrossRefPubMed
42.
go back to reference Yoshiyama T, Yanai H, Rhiengtong D, Palittapongarnpim P, Nampaisan O, Supawitkul S, et al. Development of acquired drug resistance in recurrent tuberculosis patients with various previous treatment outcomes. Int J Tuberc Lung Dis. 2004;8(1):31–8.PubMed Yoshiyama T, Yanai H, Rhiengtong D, Palittapongarnpim P, Nampaisan O, Supawitkul S, et al. Development of acquired drug resistance in recurrent tuberculosis patients with various previous treatment outcomes. Int J Tuberc Lung Dis. 2004;8(1):31–8.PubMed
43.
go back to reference Wallis RS, Kim P, Cole S, Hanna D, Andrade BB, Maeurer M, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis. 2013;13(4):362–72.CrossRefPubMed Wallis RS, Kim P, Cole S, Hanna D, Andrade BB, Maeurer M, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis. 2013;13(4):362–72.CrossRefPubMed
Metadata
Title
Later emergence of acquired drug resistance and its effect on treatment outcome in patients treated with Standard Short-Course Chemotherapy for tuberculosis
Authors
Jingtao Gao
Yan Ma
Jian Du
Guofeng Zhu
Shouyong Tan
Yanyong Fu
Liping Ma
Lianying Zhang
Feiying Liu
Daiyu Hu
Yanling Zhang
Xiangqun Li
Liang Li
Qi Li
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2016
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-016-0187-3

Other articles of this Issue 1/2016

BMC Pulmonary Medicine 1/2016 Go to the issue