Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2016

Open Access 01-12-2016 | Case report

Novel homozygous BMP9 nonsense mutation causes pulmonary arterial hypertension: a case report

Authors: Guoliang Wang, Rui Fan, Ruirui Ji, Wenxin Zou, Daniel J. Penny, Nidhy P. Varghese, Yuxin Fan

Published in: BMC Pulmonary Medicine | Issue 1/2016

Login to get access

Abstract

Background

Pulmonary arterial hypertension (PAH) is a rare, progressive, fatal vascular disorder. Genetic predisposition plays vital roles in the development of PAH, with most mutations being identified in genes involved in the transforming growth factor beta (TGF-β) signaling pathways. Defects in the BMP9 gene have been documented in hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, which is occasionally associated with PAH. Selective enhancement of endothelial BMPR2 with BMP9 reverses pulmonary arterial hypertension.

Case presentation

We report the case of a 5-year-old Hispanic boy who was diagnosed with severe PAH and right heart failure at 3 years of age. During his stay in the pediatric intensive care unit, treatment was initiated with inhaled nitric oxide and intravenous epoprostenol; he subsequently was transitioned to treprostinil, sildenafil, and prophylactic enoxaparin. Now, two years later, the child is asymptomatic on sildenafil, bosentan, subcutaneous treprostinil, and warfarin. Genetic screening revealed a novel homozygous nonsense mutation in the BMP9 gene (c.76C > T; p.Gln26Ter). The child had no telangiectasias or arteriovenous malformations; family history also was negative. Subsequent parental testing showed both parents were heterozygous for the same mutation, indicating that the child inherited the BMP9 mutant allele from each parent.

Conclusion

To our knowledge, this is the first report of a BMP9 mutation in a patient with PAH. The homozygous nonsense mutation may account for the early onset and severity of PAH in this patient and also fit the ‘two-hit’ model we proposed previously. The absence of clinical symptoms for PAH in the parents may be due to incomplete penetrance or various expressivities of the BMP9 mutations. Our study expands the spectrum of phenotypes related to BMP9 mutations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25):D42–50.CrossRefPubMed Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25):D42–50.CrossRefPubMed
2.
go back to reference Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62 suppl 25:D13–21.CrossRefPubMed Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62 suppl 25:D13–21.CrossRefPubMed
3.
go back to reference Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH et al. Pulmonary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects. Hum mutat. 2015; doi: 10.1002/humu.22904 Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH et al. Pulmonary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects. Hum mutat. 2015; doi: 10.1002/humu.22904
4.
go back to reference Qiao L, Xie L, Shi K, Zhou T, Hua Y, Liu H. Notch Signaling Change in Pulmonary Vascular Remodeling in Rats with Pulmonary Hypertension and Its Implication for Therapeutic Intervention. PLoS ONE. 2012;7(12):e51514.PubMedCentralCrossRefPubMed Qiao L, Xie L, Shi K, Zhou T, Hua Y, Liu H. Notch Signaling Change in Pulmonary Vascular Remodeling in Rats with Pulmonary Hypertension and Its Implication for Therapeutic Intervention. PLoS ONE. 2012;7(12):e51514.PubMedCentralCrossRefPubMed
5.
go back to reference Chida A, Shintani M, Nakanish T, Matsushita Y, Sato H, Eitoku T, et al. Mutations of NOTCH3 in childhood pulmonary arterial hypertension. Mol Genet Genomic Med. 2014;2(3):229–39.PubMedCentralCrossRefPubMed Chida A, Shintani M, Nakanish T, Matsushita Y, Sato H, Eitoku T, et al. Mutations of NOTCH3 in childhood pulmonary arterial hypertension. Mol Genet Genomic Med. 2014;2(3):229–39.PubMedCentralCrossRefPubMed
6.
go back to reference David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007;109(5):1953–61.CrossRefPubMed David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007;109(5):1953–61.CrossRefPubMed
7.
go back to reference Wang G, Knight L, Ji R, Lawrence P, Kanaan U, Li L, et al. Early onset severe pulmonary arterial hypertension with ‘two-hit’ digenic mutations in both BMPR2 and KCNA5 genes. Int J Cardiol. 2014;177:e167–9.CrossRefPubMed Wang G, Knight L, Ji R, Lawrence P, Kanaan U, Li L, et al. Early onset severe pulmonary arterial hypertension with ‘two-hit’ digenic mutations in both BMPR2 and KCNA5 genes. Int J Cardiol. 2014;177:e167–9.CrossRefPubMed
8.
go back to reference Upton PD, Davies RJ, Trembath RC, Morrell NW. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem. 2009;284(23):15794–804.PubMedCentralCrossRefPubMed Upton PD, Davies RJ, Trembath RC, Morrell NW. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem. 2009;284(23):15794–804.PubMedCentralCrossRefPubMed
9.
go back to reference Mallet C, Lamribet K, Giraud S, Dupuis-Girod S, Feige JJ, Bailly S, et al. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type1patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet. 2015;24(4):1142–54.CrossRefPubMed Mallet C, Lamribet K, Giraud S, Dupuis-Girod S, Feige JJ, Bailly S, et al. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type1patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet. 2015;24(4):1142–54.CrossRefPubMed
10.
go back to reference Wooderchak-Donahue WL, Mcdonald J, O’fallon B, Upton PD, Li W, Roman BL, et al. BMP-9 mutations cause avascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013;93(3):530–7.PubMedCentralCrossRefPubMed Wooderchak-Donahue WL, Mcdonald J, O’fallon B, Upton PD, Li W, Roman BL, et al. BMP-9 mutations cause avascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013;93(3):530–7.PubMedCentralCrossRefPubMed
11.
go back to reference Long L, Ormiston ML, Yang XD, Southwood M, Gräf S, Machado RD, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21(7):777–89.PubMedCentralCrossRefPubMed Long L, Ormiston ML, Yang XD, Southwood M, Gräf S, Machado RD, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21(7):777–89.PubMedCentralCrossRefPubMed
12.
go back to reference Star GP, Giovinazzo M, Langleben D. Bone morphogenic protein-9 stimulates endothelin-1 release from human pulmonary microvascular endothelial cells: a potential mechanism for elevated ET-1 levels in pulmonary arterial hypertension. Microvasc Res. 2010;80(3):349–54.CrossRefPubMed Star GP, Giovinazzo M, Langleben D. Bone morphogenic protein-9 stimulates endothelin-1 release from human pulmonary microvascular endothelial cells: a potential mechanism for elevated ET-1 levels in pulmonary arterial hypertension. Microvasc Res. 2010;80(3):349–54.CrossRefPubMed
Metadata
Title
Novel homozygous BMP9 nonsense mutation causes pulmonary arterial hypertension: a case report
Authors
Guoliang Wang
Rui Fan
Ruirui Ji
Wenxin Zou
Daniel J. Penny
Nidhy P. Varghese
Yuxin Fan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2016
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-016-0183-7

Other articles of this Issue 1/2016

BMC Pulmonary Medicine 1/2016 Go to the issue