Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Research article

The moderating effect of childhood disadvantage on the associations between smoking and occupational exposure and lung function; a cross sectional analysis of the UK Household Longitudinal Study (UKHLS)

Authors: Caroline Carney, Michaela Benzeval

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Lung function is lower in people with disadvantaged socio-economic position (SEP) and is associated with hazardous health behaviours and exposures. The associations are likely to be interactive, for example, exposure to socially patterned environmental tobacco smoke (ETS) in childhood is associated with an increased effect of smoking in adulthood. We hypothesise that disadvantaged childhood SEP increases susceptibility to the effects of hazards in adulthood for lung function. We test whether disadvantaged childhood SEP moderates smoking, physical activity, obesity, occupational exposures, ETS and air pollution’s associations with lung function.

Methods

Data are from the Nurse Health Assessment (NHA) in waves two and three of the United Kingdom Household Longitudinal Study (UKHLS). Analysis is restricted to English residents aged at least 20 for women and 25 for men, producing a study population of 16,339. Lung function is measured with forced expiratory volume in the first second (FEV1) and standardised to the percentage of expected FEV1 for a healthy non-smoker of equivalent age, gender, height and ethnicity (FEV1%). Using STATA 14, a mixed linear model was fitted with interaction terms between childhood SEP and health behaviours and occupational exposures. Cross level interactions tested whether childhood SEP moderated household ETS and neighbourhood air pollution’s associations with FEV1%.

Results

SEP, smoking, physical activity, obesity, occupational exposures and air pollution were associated with lung function. Interaction terms indicated a significantly stronger negative association between disadvantaged childhood SEP and currently smoking (coefficient -6.47 %, 95% confidence intervals (CI): 9.51 %, 3.42 %) as well as with formerly smoking and occupational exposures. Significant interactions were not found with physical activity, obesity, ETS and air pollution.

Conclusion

The findings suggest that disadvantaged SEP in childhood may make people’s lung function more susceptible to the negative effects of smoking and occupational exposures in adulthood. This is important as those most likely to encounter these exposures are at greater risk to their effects. Policy to alleviate this inequality requires intervention in health behaviours through public health campaigns and in occupational health via health and safety legislation.
Footnotes
1
Full results from all sensitivity tests are available from the corresponding author.
 
Literature
1.
go back to reference Hegewald MJ, Crapo RO. Socioeconomic status and lung function. CHEST J. 2007;132(5):1608–14.CrossRef Hegewald MJ, Crapo RO. Socioeconomic status and lung function. CHEST J. 2007;132(5):1608–14.CrossRef
2.
go back to reference Gray LA, Leyland AH, Benzeval M, Watt GC. Explaining the social patterning of lung function in adulthood at different ages: the roles of childhood precursors, health behaviours and environmental factors. J Epidemiol Community Health. 2013;67(11):905–11.CrossRef Gray LA, Leyland AH, Benzeval M, Watt GC. Explaining the social patterning of lung function in adulthood at different ages: the roles of childhood precursors, health behaviours and environmental factors. J Epidemiol Community Health. 2013;67(11):905–11.CrossRef
3.
go back to reference Ramsay SE, Whincup PH, Lennon LT, Morris RW, Wannamethee SG. Longitudinal associations of socioeconomic position in childhood and adulthood with decline in lung function over 20 years: results from a population-based cohort of British men. Thorax. 2011;66(12):1058–64.CrossRef Ramsay SE, Whincup PH, Lennon LT, Morris RW, Wannamethee SG. Longitudinal associations of socioeconomic position in childhood and adulthood with decline in lung function over 20 years: results from a population-based cohort of British men. Thorax. 2011;66(12):1058–64.CrossRef
4.
go back to reference Bartley M, Kelly Y, Sacker A. Early life financial adversity and respiratory function in midlife: a prospective birth cohort study. Am J Epidemiol. 2012;175(1):33–42.CrossRef Bartley M, Kelly Y, Sacker A. Early life financial adversity and respiratory function in midlife: a prospective birth cohort study. Am J Epidemiol. 2012;175(1):33–42.CrossRef
5.
go back to reference Reynolds RM, Labad J, Buss C, Ghaemmaghami P, Raikkonen K. Transmitting biological effects of stress in utero: implications for mother and offspring. Psychoneuroendocrinology. 2013;38(9):1843–9.CrossRef Reynolds RM, Labad J, Buss C, Ghaemmaghami P, Raikkonen K. Transmitting biological effects of stress in utero: implications for mother and offspring. Psychoneuroendocrinology. 2013;38(9):1843–9.CrossRef
6.
go back to reference Lawlor DA, Ebrahim S, Davey Smith G. Association of birth weight with adult lung function: findings from the British Women's Heart and Health Study and a meta-analysis. Thorax. 2005;60(10):851–8.CrossRef Lawlor DA, Ebrahim S, Davey Smith G. Association of birth weight with adult lung function: findings from the British Women's Heart and Health Study and a meta-analysis. Thorax. 2005;60(10):851–8.CrossRef
7.
go back to reference Orfei L, Strachan DP, Rudnicka AR, Wadsworth ME. Early influences on adult lung function in two national British cohorts. Arch Dis Child. 2008;93(7):570–4.CrossRef Orfei L, Strachan DP, Rudnicka AR, Wadsworth ME. Early influences on adult lung function in two national British cohorts. Arch Dis Child. 2008;93(7):570–4.CrossRef
8.
go back to reference Tennant PW, Gibson GJ, Pearce MS. Lifecourse predictors of adult respiratory function: results from the Newcastle Thousand Families Study. Thorax. 2008;63(9):823–30.CrossRef Tennant PW, Gibson GJ, Pearce MS. Lifecourse predictors of adult respiratory function: results from the Newcastle Thousand Families Study. Thorax. 2008;63(9):823–30.CrossRef
9.
go back to reference Delpisheh A, Kelly Y, Rizwan S, Brabin BJ. Socio-economic status, smoking during pregnancy and birth outcomes: an analysis of cross-sectional community studies in Liverpool (1993-2001). J Child health Care. 2006;10(2):140–8.CrossRef Delpisheh A, Kelly Y, Rizwan S, Brabin BJ. Socio-economic status, smoking during pregnancy and birth outcomes: an analysis of cross-sectional community studies in Liverpool (1993-2001). J Child health Care. 2006;10(2):140–8.CrossRef
10.
go back to reference Stocks J, Sonnappa S. Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2013;7(3):161–73.CrossRef Stocks J, Sonnappa S. Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2013;7(3):161–73.CrossRef
11.
go back to reference Delpisheh A, Kelly Y, Brabin BJ. Passive cigarette smoke exposure in primary school children in Liverpool. Public Health. 2006;120(1):65–9.CrossRef Delpisheh A, Kelly Y, Brabin BJ. Passive cigarette smoke exposure in primary school children in Liverpool. Public Health. 2006;120(1):65–9.CrossRef
12.
go back to reference Upton MN, Smith GD, McConnachie A, Hart CL, Watt GC. Maternal and personal cigarette smoking synergize to increase airflow limitation in adults. Am J Respir Crit Care Med. 2004;169(4):479–87.CrossRef Upton MN, Smith GD, McConnachie A, Hart CL, Watt GC. Maternal and personal cigarette smoking synergize to increase airflow limitation in adults. Am J Respir Crit Care Med. 2004;169(4):479–87.CrossRef
13.
go back to reference Guerra S, Stern DA, Zhou M, Sherrill DL, Wright AL, Morgan WJ, Martinez FD. Combined effects of parental and active smoking on early lung function deficits: a prospective study from birth to age 26 years. Thorax. 2013;68(11):1021–8.CrossRef Guerra S, Stern DA, Zhou M, Sherrill DL, Wright AL, Morgan WJ, Martinez FD. Combined effects of parental and active smoking on early lung function deficits: a prospective study from birth to age 26 years. Thorax. 2013;68(11):1021–8.CrossRef
14.
go back to reference Ozguner F, Koyu A, Cesur G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health. 2005;21(10):21–6.CrossRef Ozguner F, Koyu A, Cesur G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health. 2005;21(10):21–6.CrossRef
15.
go back to reference Hnizdo E, Vallyathan V. Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence. Occup Environ Med. 2003;60(4):237–43.CrossRef Hnizdo E, Vallyathan V. Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence. Occup Environ Med. 2003;60(4):237–43.CrossRef
16.
go back to reference Moller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res. 2014;762:133–66.CrossRef Moller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res. 2014;762:133–66.CrossRef
17.
go back to reference Miller MR. The role of oxidative stress in the cardiovascular actions of particulate air pollution. Biochem Soc Trans. 2014;42(4):1006–11.CrossRef Miller MR. The role of oxidative stress in the cardiovascular actions of particulate air pollution. Biochem Soc Trans. 2014;42(4):1006–11.CrossRef
18.
go back to reference Nystad W, Samuelsen SO, Nafstad P, Langhammer A. Association between level of physical activity and lung function among Norwegian men and women: the HUNT study. Int J Tuberc Lung Dis. 2006;10(12):1399–405.PubMed Nystad W, Samuelsen SO, Nafstad P, Langhammer A. Association between level of physical activity and lung function among Norwegian men and women: the HUNT study. Int J Tuberc Lung Dis. 2006;10(12):1399–405.PubMed
19.
go back to reference Parameswaran K, Todd DC, Soth M. Altered respiratory physiology in obesity. Can Respir J. 2006;13(4):203–10.CrossRef Parameswaran K, Todd DC, Soth M. Altered respiratory physiology in obesity. Can Respir J. 2006;13(4):203–10.CrossRef
20.
go back to reference Brazzale DJ, Pretto JJ, Schachter LM. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology. 2015;20(5):715–21.CrossRef Brazzale DJ, Pretto JJ, Schachter LM. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology. 2015;20(5):715–21.CrossRef
21.
go back to reference Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am J Respir Crit Care Med. 2007;175(5):458–63.CrossRef Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am J Respir Crit Care Med. 2007;175(5):458–63.CrossRef
22.
go back to reference Thyagarajan B, Jacobs DR Jr, Apostol GG, Smith LJ, Jensen RL, Crapo RO, Barr RG, Lewis CE, Williams OD. Longitudinal association of body mass index with lung function: the CARDIA study. Respir Res. 2008;9(31):1465–9921. Thyagarajan B, Jacobs DR Jr, Apostol GG, Smith LJ, Jensen RL, Crapo RO, Barr RG, Lewis CE, Williams OD. Longitudinal association of body mass index with lung function: the CARDIA study. Respir Res. 2008;9(31):1465–9921.
23.
go back to reference Baughman P, Marott JL, Lange P, Martin CJ, Shankar A, Petsonk EL, Hnizdo E. Combined effect of lung function level and decline increases morbidity and mortality risks. Eur J Epidemiol. 2012;27(12):933–43.CrossRef Baughman P, Marott JL, Lange P, Martin CJ, Shankar A, Petsonk EL, Hnizdo E. Combined effect of lung function level and decline increases morbidity and mortality risks. Eur J Epidemiol. 2012;27(12):933–43.CrossRef
24.
go back to reference Hole DJ, Watt GC, Davey-Smith G, Hart CL, Gillis CR, Hawthorne VM. Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study. BMJ. 1996;313(7059):711–5.CrossRef Hole DJ, Watt GC, Davey-Smith G, Hart CL, Gillis CR, Hawthorne VM. Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study. BMJ. 1996;313(7059):711–5.CrossRef
25.
go back to reference University of Essex. Institute for Social and Economic Research and National Centre for Social Research, Understanding Society: Waves 2 and 3 Nurse Health Assessment, 2010- 2012 [data collection]. 3rd Edition. UK Data Service. SN:7251 https://doi.org/10.5255/UKDA-SN-7251-3. University of Essex. Institute for Social and Economic Research and National Centre for Social Research, Understanding Society: Waves 2 and 3 Nurse Health Assessment, 2010- 2012 [data collection]. 3rd Edition. UK Data Service. SN:7251 https://​doi.​org/​10.​5255/​UKDA-SN-7251-3.
26.
go back to reference University of Essex. Institute for Social and Economic Research. (2017). Kantar Public, NatCen Social Research,. Understanding Society: Waves 1-7, 2009-2016: Special Licence Access, Census 2011 Lower Layer Super Output Areas. [data collection]. 6th Edition. UK Data Service. SN: 7248, https://doi.org/10.5255/UKDA-SN-7248-6). University of Essex. Institute for Social and Economic Research. (2017). Kantar Public, NatCen Social Research,. Understanding Society: Waves 1-7, 2009-2016: Special Licence Access, Census 2011 Lower Layer Super Output Areas. [data collection]. 6th Edition. UK Data Service. SN: 7248, https://​doi.​org/​10.​5255/​UKDA-SN-7248-6).
27.
go back to reference Buck N, McFall S. Understanding Society: design overview. Longitudinal Life Course Studies. 2011;3(1):5–17. Buck N, McFall S. Understanding Society: design overview. Longitudinal Life Course Studies. 2011;3(1):5–17.
28.
go back to reference Brice J, Buck N, Prentice-Lane E. British Household Panel Survey User Manual Volume A: Introduction, Technical Report and Appendices. Colchester: University of Essex; 2002. Brice J, Buck N, Prentice-Lane E. British Household Panel Survey User Manual Volume A: Introduction, Technical Report and Appendices. Colchester: University of Essex; 2002.
29.
go back to reference McFall S, Petersen J, Kaminska O, Lynn P: Understanding Society–The UK Household Longitudinal Study. Interim Release of Wave 1, Year 1 Data, User Manual 2010. McFall S, Petersen J, Kaminska O, Lynn P: Understanding Society–The UK Household Longitudinal Study. Interim Release of Wave 1, Year 1 Data, User Manual 2010.
30.
go back to reference Benzeval M, Davillas A, Kumari M, Lynn P. Understanding Society: UK household longitudinal study: biomarker user guide and glossary. Colchester: University of Essex; 2014. Benzeval M, Davillas A, Kumari M, Lynn P. Understanding Society: UK household longitudinal study: biomarker user guide and glossary. Colchester: University of Essex; 2014.
31.
go back to reference Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253.CrossRef Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253.CrossRef
32.
go back to reference Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MS, Zheng J. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.CrossRef Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MS, Zheng J. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.CrossRef
33.
go back to reference Gildea TR, McCarthy K: Pulmonary function testing. In: Cleveland clinic: current clinical medicine. edn.; 2010.CrossRef Gildea TR, McCarthy K: Pulmonary function testing. In: Cleveland clinic: current clinical medicine. edn.; 2010.CrossRef
34.
go back to reference Pierce RJ, Hillman D, Young IH, O’Donoghue F, Zimmerman PV, West S, Burdon JG. Respiratory function tests and their application. Respirology. 2005;10(Suppl 2):S1–S19.CrossRef Pierce RJ, Hillman D, Young IH, O’Donoghue F, Zimmerman PV, West S, Burdon JG. Respiratory function tests and their application. Respirology. 2005;10(Suppl 2):S1–S19.CrossRef
35.
go back to reference Sadhra S, Kurmi O, Chambers H, Lam K, Fishwick D, Group OCR. Development of an occupational airborne chemical exposure matrix. Occup Med. 2016;66(5):358–64.CrossRef Sadhra S, Kurmi O, Chambers H, Lam K, Fishwick D, Group OCR. Development of an occupational airborne chemical exposure matrix. Occup Med. 2016;66(5):358–64.CrossRef
36.
go back to reference World Health Organization. Waist circumference and waist-hip ratio. Geneva, 8-11 December 2008: Report of a WHO expert consultation; 2011. World Health Organization. Waist circumference and waist-hip ratio. Geneva, 8-11 December 2008: Report of a WHO expert consultation; 2011.
37.
go back to reference McLennan D, Barnes H, Noble M, Davies J, Garratt E, Dibben C. The English indices of deprivation 2010. London: Department for Communities and Local Government; 2011. McLennan D, Barnes H, Noble M, Davies J, Garratt E, Dibben C. The English indices of deprivation 2010. London: Department for Communities and Local Government; 2011.
38.
go back to reference Rabe-Hesketh S, Skrondal A. Multilevel and longitudinal modeling using Stata: STATA press; 2008. Rabe-Hesketh S, Skrondal A. Multilevel and longitudinal modeling using Stata: STATA press; 2008.
39.
go back to reference StataCorp. Stata: Release 14. In: Statistical Software. College Station: StataCorp LP; 2015. StataCorp. Stata: Release 14. In: Statistical Software. College Station: StataCorp LP; 2015.
40.
go back to reference Hughes RA, Heron J, Sterne JAC, Tilling K. Accounting for missing data in statistical analyses: multiple imputation is not always the answer, International Journal of Epidemiology. In: dyz032; 2019. Hughes RA, Heron J, Sterne JAC, Tilling K. Accounting for missing data in statistical analyses: multiple imputation is not always the answer, International Journal of Epidemiology. In: dyz032; 2019.
41.
go back to reference Carney C, Benzeval M. The moderating effect of childhood socio-economic disadvantage on health behaviours and occupational and environmental hazards associations with adult lung function; a cross sectional analysis using the UK Household Longitudinal Study (UKHLS). Poster at Society of Social Medicine conference, 5-7 September 2018, held at the University of Glasgow, Glasgow; 2018. Carney C, Benzeval M. The moderating effect of childhood socio-economic disadvantage on health behaviours and occupational and environmental hazards associations with adult lung function; a cross sectional analysis using the UK Household Longitudinal Study (UKHLS). Poster at Society of Social Medicine conference, 5-7 September 2018, held at the University of Glasgow, Glasgow; 2018.
Metadata
Title
The moderating effect of childhood disadvantage on the associations between smoking and occupational exposure and lung function; a cross sectional analysis of the UK Household Longitudinal Study (UKHLS)
Authors
Caroline Carney
Michaela Benzeval
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-7039-z

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue