Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Smoking and Nicotine Detoxification | Study protocol

Contribution of thirdhand smoke to overall tobacco smoke exposure in pediatric patients: study protocol

Authors: E. Melinda Mahabee-Gittens, Georg E. Matt, Eunha Hoh, Penelope J. E. Quintana, Lara Stone, Maegan A. Geraci, Chase A. Wullenweber, Gena N. Koutsounadis, Abigail G. Ruwe, Gabriel T. Meyers, Mark A. Zakrajsek, John K. Witry, Ashley L. Merianos

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Thirdhand smoke (THS) is the persistent residue resulting from secondhand smoke (SHS) that accumulates in dust, objects, and on surfaces in homes where tobacco has been used, and is reemitted into air. Very little is known about the extent to which THS contributes to children’s overall tobacco smoke exposure (OTS) levels, defined as their combined THS and SHS exposure. Even less is known about the effect of OTS and THS on children’s health. This project will examine how different home smoking behaviors contribute to THS and OTS and if levels of THS are associated with respiratory illnesses in nonsmoking children.

Methods

This project leverages the experimental design from an ongoing pediatric emergency department-based tobacco cessation trial of caregivers who smoke and their children (NIHR01HD083354). At baseline and follow-up, we will collect urine and handwipe samples from children and samples of dust and air from the homes of smokers who smoke indoors, have smoking bans or who have quit smoking. These samples will be analyzed to examine to what extent THS pollution at home contributes to OTS exposure over and above SHS and to what extent THS continues to persist and contribute to OTS in homes of smokers who have quit or have smoking bans. Targeted and nontargeted chemical analyses of home dust samples will explore which types of THS pollutants are present in homes. Electronic medical record review will examine if THS and OTS levels are associated with child respiratory illness. Additionally, a repository of child and environmental samples will be created.

Discussion

The results of this study will be crucial to help close gaps in our understanding of the types, quantity, and clinical effects of OTS, THS exposure, and THS pollutants in a unique sample of tobacco smoke-exposed ill children and their homes. The potential impact of these findings is substantial, as currently the level of risk in OTS attributable to THS is unknown. This research has the potential to change how we protect children from OTS, by recognizing that SHS and THS exposure needs to be addressed separately and jointly as sources of pollution and exposure.

Trial registration

ClinicalTrials.​gov Identifier: NCT02531594. Date of registration: August 24, 2015.
Literature
1.
go back to reference Jacob P 3rd, Benowitz NL, Destaillats H, Gundel L, Hang B, Martins-Green M, Matt GE, Quintana PJ, Samet JM, Schick SF, et al. Thirdhand Smoke: New Evidence, Challenges, and Future Directions. Chem Res Toxicol. 2017;30(1):270–94.CrossRef Jacob P 3rd, Benowitz NL, Destaillats H, Gundel L, Hang B, Martins-Green M, Matt GE, Quintana PJ, Samet JM, Schick SF, et al. Thirdhand Smoke: New Evidence, Challenges, and Future Directions. Chem Res Toxicol. 2017;30(1):270–94.CrossRef
2.
go back to reference Matt GE, Quintana PJ, Destaillats H, Gundel LA, Sleiman M, Singer BC, Jacob P, Benowitz N, Winickoff JP, Rehan V, et al. Thirdhand tobacco smoke: emerging evidence and arguments for a multidisciplinary research agenda. Environ Health Perspect. 2011;119(9):1218–26.CrossRef Matt GE, Quintana PJ, Destaillats H, Gundel LA, Sleiman M, Singer BC, Jacob P, Benowitz N, Winickoff JP, Rehan V, et al. Thirdhand tobacco smoke: emerging evidence and arguments for a multidisciplinary research agenda. Environ Health Perspect. 2011;119(9):1218–26.CrossRef
3.
go back to reference Hoh E, Hunt RN, Quintana PJ, Zakarian JM, Chatfield DA, Wittry BC, Rodriguez E, Matt GE. Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled household dust. Environ Sci Technol. 2012;46(7):4174–83.CrossRef Hoh E, Hunt RN, Quintana PJ, Zakarian JM, Chatfield DA, Wittry BC, Rodriguez E, Matt GE. Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled household dust. Environ Sci Technol. 2012;46(7):4174–83.CrossRef
4.
go back to reference Northrup TF, Jacob P 3rd, Benowitz NL, Hoh E, Quintana PJ, Hovell MF, Matt GE, Stotts AL. Thirdhand Smoke: State of the Science and a Call for Policy Expansion. Public Health Rep. 2016;131(2):233–8.CrossRef Northrup TF, Jacob P 3rd, Benowitz NL, Hoh E, Quintana PJ, Hovell MF, Matt GE, Stotts AL. Thirdhand Smoke: State of the Science and a Call for Policy Expansion. Public Health Rep. 2016;131(2):233–8.CrossRef
5.
go back to reference Matt GE, Quintana PJ, Hovell MF, Bernert JT, Song S, Novianti N, Juarez T, Floro J, Gehrman C, Garcia M, et al. Households contaminated by environmental tobacco smoke: sources of infant exposures. Tob Control. 2004;13(1):29–37.CrossRef Matt GE, Quintana PJ, Hovell MF, Bernert JT, Song S, Novianti N, Juarez T, Floro J, Gehrman C, Garcia M, et al. Households contaminated by environmental tobacco smoke: sources of infant exposures. Tob Control. 2004;13(1):29–37.CrossRef
6.
go back to reference Mahabee-Gittens EM, Merianos AL, Matt GE. Preliminary evidence that high levels of nicotine on children's hands may contribute to overall tobacco smoke exposure. Tob Control. 2018;27(2):217–9.PubMed Mahabee-Gittens EM, Merianos AL, Matt GE. Preliminary evidence that high levels of nicotine on children's hands may contribute to overall tobacco smoke exposure. Tob Control. 2018;27(2):217–9.PubMed
7.
go back to reference Mahabee-Gittens EM, Merianos AL, Hoh E, Quintana PJ, Matt GE. Nicotine on Children’s Hands: Limited Protection of Smoking Bans and Initial Clinical Findings. Tobacco Use Insights. 2019;12:1179173X18823493.CrossRef Mahabee-Gittens EM, Merianos AL, Hoh E, Quintana PJ, Matt GE. Nicotine on Children’s Hands: Limited Protection of Smoking Bans and Initial Clinical Findings. Tobacco Use Insights. 2019;12:1179173X18823493.CrossRef
8.
go back to reference Bruckner JV. Differences in sensitivity of children and adults to chemical toxicity: the NAS panel report. Regul Toxicol Pharmacol. 2000;31(3):280–5.CrossRef Bruckner JV. Differences in sensitivity of children and adults to chemical toxicity: the NAS panel report. Regul Toxicol Pharmacol. 2000;31(3):280–5.CrossRef
9.
go back to reference Schwenk M, Gundert-Remy U, Heinemeyer G, Olejniczak K, Stahlmann R, Kaufmann W, Bolt HM, Greim H, von Keutz E, Gelbke HP, et al. Children as a sensitive subgroup and their role in regulatory toxicology: DGPT workshop report. Arch Toxicol. 2003;77(1):2–6.CrossRef Schwenk M, Gundert-Remy U, Heinemeyer G, Olejniczak K, Stahlmann R, Kaufmann W, Bolt HM, Greim H, von Keutz E, Gelbke HP, et al. Children as a sensitive subgroup and their role in regulatory toxicology: DGPT workshop report. Arch Toxicol. 2003;77(1):2–6.CrossRef
10.
go back to reference Ginsberg G, Hattis D, Sonawane B. Incorporating pharmacokinetic differences between children and adults in assessing children's risks to environmental toxicants. Toxicol Appl Pharmacol. 2004;198(2):164–83.CrossRef Ginsberg G, Hattis D, Sonawane B. Incorporating pharmacokinetic differences between children and adults in assessing children's risks to environmental toxicants. Toxicol Appl Pharmacol. 2004;198(2):164–83.CrossRef
11.
go back to reference Roberts JW, Wallace LA, Camann DE, Dickey P, Gilbert SG, Lewis RG, Takaro TK. Monitoring and reducing exposure of infants to pollutants in house dust. Rev Environ Contam Toxicol. 2009;201:1–39.PubMed Roberts JW, Wallace LA, Camann DE, Dickey P, Gilbert SG, Lewis RG, Takaro TK. Monitoring and reducing exposure of infants to pollutants in house dust. Rev Environ Contam Toxicol. 2009;201:1–39.PubMed
12.
go back to reference U.S. EPA. Child-Specific Exposure Factors Handbook (2008, Final Report). Washington, DC: U.S. Environmental Protection Agency; 2008. U.S. EPA. Child-Specific Exposure Factors Handbook (2008, Final Report). Washington, DC: U.S. Environmental Protection Agency; 2008.
13.
go back to reference Mitro SD, Dodson RE, Singla V, Adamkiewicz G, Elmi AF, Tilly MK, Zota AR. Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-analysis of U.S. Studies. Environ Sci Technol. 2016;50(19):10661–72.CrossRef Mitro SD, Dodson RE, Singla V, Adamkiewicz G, Elmi AF, Tilly MK, Zota AR. Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-analysis of U.S. Studies. Environ Sci Technol. 2016;50(19):10661–72.CrossRef
14.
go back to reference Wilson KM, Klein JD, Blumkin AK, Gottlieb M, Winickoff JP. Tobacco-smoke exposure in children who live in multiunit housing. Pediatrics. 2011;127(1):85–92.CrossRef Wilson KM, Klein JD, Blumkin AK, Gottlieb M, Winickoff JP. Tobacco-smoke exposure in children who live in multiunit housing. Pediatrics. 2011;127(1):85–92.CrossRef
15.
go back to reference Bahl V, Jacob P 3rd, Havel C, Schick SF, Talbot P. Thirdhand cigarette smoke: factors affecting exposure and remediation. PLoS One. 2014;9(10):e108258.CrossRef Bahl V, Jacob P 3rd, Havel C, Schick SF, Talbot P. Thirdhand cigarette smoke: factors affecting exposure and remediation. PLoS One. 2014;9(10):e108258.CrossRef
16.
go back to reference Hang B, Sarker AH, Havel C, Saha S, Hazra TK, Schick S, Jacob P 3rd, Rehan VK, Chenna A, Sharan D, et al. Thirdhand smoke causes DNA damage in human cells. Mutagenesis. 2013;28(4):381–91.CrossRef Hang B, Sarker AH, Havel C, Saha S, Hazra TK, Schick S, Jacob P 3rd, Rehan VK, Chenna A, Sharan D, et al. Thirdhand smoke causes DNA damage in human cells. Mutagenesis. 2013;28(4):381–91.CrossRef
17.
go back to reference Hammer TR, Fischer K, Mueller M, Hoefer D. Effects of cigarette smoke residues from textiles on fibroblasts, neurocytes and zebrafish embryos and nicotine permeation through human skin. Int J Hyg Environ Health. 2011;214(5):384–91.CrossRef Hammer TR, Fischer K, Mueller M, Hoefer D. Effects of cigarette smoke residues from textiles on fibroblasts, neurocytes and zebrafish embryos and nicotine permeation through human skin. Int J Hyg Environ Health. 2011;214(5):384–91.CrossRef
18.
go back to reference Martins-Green M, Adhami N, Frankos M, Valdez M, Goodwin B, Lyubovitsky J, Dhall S, Garcia M, Egiebor I, Martinez B, et al. Cigarette smoke toxins deposited on surfaces: implications for human health. PLoS One. 2014;9(1):e86391.CrossRef Martins-Green M, Adhami N, Frankos M, Valdez M, Goodwin B, Lyubovitsky J, Dhall S, Garcia M, Egiebor I, Martinez B, et al. Cigarette smoke toxins deposited on surfaces: implications for human health. PLoS One. 2014;9(1):e86391.CrossRef
19.
go back to reference Mahabee-Gittens EM, Ammerman RT, Khoury JC, Stone L, Meyers GT, Witry JK, Merianos AL, Mancuso TF, Stackpole KMW, Bennett BL, et al. Healthy families: study protocol for a randomized controlled trial of a screening, brief intervention, and referral to treatment intervention for caregivers to reduce secondhand smoke exposure among pediatric emergency patients. BMC Public Health. 2017;17(1):374.CrossRef Mahabee-Gittens EM, Ammerman RT, Khoury JC, Stone L, Meyers GT, Witry JK, Merianos AL, Mancuso TF, Stackpole KMW, Bennett BL, et al. Healthy families: study protocol for a randomized controlled trial of a screening, brief intervention, and referral to treatment intervention for caregivers to reduce secondhand smoke exposure among pediatric emergency patients. BMC Public Health. 2017;17(1):374.CrossRef
21.
go back to reference Mahabee-Gittens EM, Dexheimer JW, Tabangin M, Khoury JC, Merianos AL, Stone L, Meyers GT, Gordon JS. An Electronic Health Record-Based Strategy to Address Child Tobacco Smoke Exposure. Am J Prev Med. 2018;54(1):64–71.CrossRef Mahabee-Gittens EM, Dexheimer JW, Tabangin M, Khoury JC, Merianos AL, Stone L, Meyers GT, Gordon JS. An Electronic Health Record-Based Strategy to Address Child Tobacco Smoke Exposure. Am J Prev Med. 2018;54(1):64–71.CrossRef
22.
go back to reference Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60.CrossRef Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60.CrossRef
23.
go back to reference Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature reviews Cancer. 2003;3(10):733–44.CrossRef Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature reviews Cancer. 2003;3(10):733–44.CrossRef
24.
go back to reference Jacob P 3rd, Goniewicz ML, Havel CM, Schick SF, Benowitz NL. Nicotelline: a proposed biomarker and environmental tracer for particulate matter derived from tobacco smoke. Chem Res Toxicol. 2013;26(11):1615–31.CrossRef Jacob P 3rd, Goniewicz ML, Havel CM, Schick SF, Benowitz NL. Nicotelline: a proposed biomarker and environmental tracer for particulate matter derived from tobacco smoke. Chem Res Toxicol. 2013;26(11):1615–31.CrossRef
25.
go back to reference Jacob P 3rd, Yu L, Duan M, Ramos L, Yturralde O, Benowitz NL. Determination of the nicotine metabolites cotinine and trans-3'-hydroxycotinine in biologic fluids of smokers and non-smokers using liquid chromatography-tandem mass spectrometry: biomarkers for tobacco smoke exposure and for phenotyping cytochrome P450 2A6 activity. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(3-4):267–76.CrossRef Jacob P 3rd, Yu L, Duan M, Ramos L, Yturralde O, Benowitz NL. Determination of the nicotine metabolites cotinine and trans-3'-hydroxycotinine in biologic fluids of smokers and non-smokers using liquid chromatography-tandem mass spectrometry: biomarkers for tobacco smoke exposure and for phenotyping cytochrome P450 2A6 activity. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(3-4):267–76.CrossRef
26.
go back to reference Jacob P 3rd, Havel C, Lee DH, Yu L, Eisner MD, Benowitz NL. Subpicogram per milliliter determination of the tobacco-specific carcinogen metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine using liquid chromatography-tandem mass spectrometry. Anal Chem. 2008;80(21):8115–21.CrossRef Jacob P 3rd, Havel C, Lee DH, Yu L, Eisner MD, Benowitz NL. Subpicogram per milliliter determination of the tobacco-specific carcinogen metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine using liquid chromatography-tandem mass spectrometry. Anal Chem. 2008;80(21):8115–21.CrossRef
27.
go back to reference Quintana PJ, Matt GE, Chatfield D, Zakarian JM, Fortmann AL, Hoh E. Wipe sampling for nicotine as a marker of thirdhand tobacco smoke contamination on surfaces in homes, cars, and hotels. Nicotine Tob Res. 2013;15(9):1555–63.CrossRef Quintana PJ, Matt GE, Chatfield D, Zakarian JM, Fortmann AL, Hoh E. Wipe sampling for nicotine as a marker of thirdhand tobacco smoke contamination on surfaces in homes, cars, and hotels. Nicotine Tob Res. 2013;15(9):1555–63.CrossRef
28.
go back to reference Matt GE, Quintana PJE, Zakarian JM, Hoh E, Hovell MF, Mahabee-Gittens M, Watanabe K, Datuin K, Vue C, Chatfield DA. When smokers quit: exposure to nicotine and carcinogens persists from thirdhand smoke pollution. Tob Control. 2016;26(5):548–56.CrossRef Matt GE, Quintana PJE, Zakarian JM, Hoh E, Hovell MF, Mahabee-Gittens M, Watanabe K, Datuin K, Vue C, Chatfield DA. When smokers quit: exposure to nicotine and carcinogens persists from thirdhand smoke pollution. Tob Control. 2016;26(5):548–56.CrossRef
29.
go back to reference Northrup TF, Khan AM, Jacob P 3rd, Benowitz NL, Hoh E, Hovell MF, Matt GE, Stotts AL. Thirdhand smoke contamination in hospital settings: assessing exposure risk for vulnerable paediatric patients. Tob Control. 2016;25(6):619–23.CrossRef Northrup TF, Khan AM, Jacob P 3rd, Benowitz NL, Hoh E, Hovell MF, Matt GE, Stotts AL. Thirdhand smoke contamination in hospital settings: assessing exposure risk for vulnerable paediatric patients. Tob Control. 2016;25(6):619–23.CrossRef
30.
go back to reference Matt GE, Quintana PJE, Hoh E, Zakarian JM, Chowdhury Z, Hovell MF, Jacob P, Watanabe K, Theweny TS, Flores V, et al. A Casino goes smoke free: a longitudinal study of secondhand and thirdhand smoke pollution and exposure. Tob Control. 2018;27(6):643–9.CrossRef Matt GE, Quintana PJE, Hoh E, Zakarian JM, Chowdhury Z, Hovell MF, Jacob P, Watanabe K, Theweny TS, Flores V, et al. A Casino goes smoke free: a longitudinal study of secondhand and thirdhand smoke pollution and exposure. Tob Control. 2018;27(6):643–9.CrossRef
31.
go back to reference Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Atlanta: U.S. Department of Health and Human Services; 1995. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Atlanta: U.S. Department of Health and Human Services; 1995.
32.
go back to reference Keith LH. The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromatic Compounds. 2014;35(2-4):147–60.CrossRef Keith LH. The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromatic Compounds. 2014;35(2-4):147–60.CrossRef
33.
go back to reference Hoh E, Dodder NG, Lehotay SJ, Pangallo KC, Reddy CM, Maruya KA. Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments. Environ Sci Technol. 2012;46(15):8001–8.CrossRef Hoh E, Dodder NG, Lehotay SJ, Pangallo KC, Reddy CM, Maruya KA. Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments. Environ Sci Technol. 2012;46(15):8001–8.CrossRef
34.
go back to reference Hoh E, Lehotay SJ, Mastovska K, Ngo HL, Vetter W, Pangallo KC, Reddy CM. Capabilities of direct sample introduction--comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry to analyze organic chemicals of interest in fish oils. Environ Sci Technol. 2009;43(9):3240–7.CrossRef Hoh E, Lehotay SJ, Mastovska K, Ngo HL, Vetter W, Pangallo KC, Reddy CM. Capabilities of direct sample introduction--comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry to analyze organic chemicals of interest in fish oils. Environ Sci Technol. 2009;43(9):3240–7.CrossRef
35.
go back to reference Hoh E, Lehotay SJ, Pangallo KC, Mastovska K, Ngo HL, Reddy CM, Vetter W. Simultaneous quantitation of multiple classes of organohalogen compounds in fish oils with direct sample introduction comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. J Agric Food Chem. 2009;57(7):2653–60.CrossRef Hoh E, Lehotay SJ, Pangallo KC, Mastovska K, Ngo HL, Reddy CM, Vetter W. Simultaneous quantitation of multiple classes of organohalogen compounds in fish oils with direct sample introduction comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. J Agric Food Chem. 2009;57(7):2653–60.CrossRef
36.
go back to reference Dalluge J, van Rijn M, Beens J, Vreuls RJ, Brinkman UA. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection applied to the determination of pesticides in food extracts. J Chromatogr A. 2002;965(1-2):207–17.CrossRef Dalluge J, van Rijn M, Beens J, Vreuls RJ, Brinkman UA. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection applied to the determination of pesticides in food extracts. J Chromatogr A. 2002;965(1-2):207–17.CrossRef
37.
go back to reference Dalluge J, van Stee LL, Xu X, Williams J, Beens J, Vreuls RJ, Brinkman UA. Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry. Cigarette smoke. J Chromatogr A. 2002;974(1-2):169–84.CrossRef Dalluge J, van Stee LL, Xu X, Williams J, Beens J, Vreuls RJ, Brinkman UA. Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry. Cigarette smoke. J Chromatogr A. 2002;974(1-2):169–84.CrossRef
38.
go back to reference Kuusimaki L, Pfaffli P, Froshaug M, Becher G, Dybing E, Peltonen K. Determination of nicotine as an indicator of environmental tobacco smoke in restaurants. Am J Ind Med. 1999;(Suppl 1):152–4. Kuusimaki L, Pfaffli P, Froshaug M, Becher G, Dybing E, Peltonen K. Determination of nicotine as an indicator of environmental tobacco smoke in restaurants. Am J Ind Med. 1999;(Suppl 1):152–4.
39.
40.
go back to reference StataCorp. Stata statistical software: Release 13. College Station: Stata Corporation; 2013. StataCorp. Stata statistical software: Release 13. College Station: Stata Corporation; 2013.
41.
go back to reference Matt GE, Hovell MF, Zakarian JM, Bernert JT, Pirkle JL, Hammond SK. Measuring secondhand smoke exposure in babies: the reliability and validity of mother reports in a sample of low-income families. Health Psychol. 2000;19(3):232–41.CrossRef Matt GE, Hovell MF, Zakarian JM, Bernert JT, Pirkle JL, Hammond SK. Measuring secondhand smoke exposure in babies: the reliability and validity of mother reports in a sample of low-income families. Health Psychol. 2000;19(3):232–41.CrossRef
42.
go back to reference Matt GE, Wahlgren DR, Hovell MF, Zakarian JM, Bernert JT, Meltzer SB, Pirkle JL, Caudill S. Measuring environmental tobacco smoke exposure in infants and young children through urine cotinine and memory-based parental reports: empirical findings and discussion. Tob Control. 1999;8(3):282–9.CrossRef Matt GE, Wahlgren DR, Hovell MF, Zakarian JM, Bernert JT, Meltzer SB, Pirkle JL, Caudill S. Measuring environmental tobacco smoke exposure in infants and young children through urine cotinine and memory-based parental reports: empirical findings and discussion. Tob Control. 1999;8(3):282–9.CrossRef
43.
go back to reference Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.CrossRef Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.CrossRef
Metadata
Title
Contribution of thirdhand smoke to overall tobacco smoke exposure in pediatric patients: study protocol
Authors
E. Melinda Mahabee-Gittens
Georg E. Matt
Eunha Hoh
Penelope J. E. Quintana
Lara Stone
Maegan A. Geraci
Chase A. Wullenweber
Gena N. Koutsounadis
Abigail G. Ruwe
Gabriel T. Meyers
Mark A. Zakrajsek
John K. Witry
Ashley L. Merianos
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-6829-7

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue