Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Research article

Effect of diet with or without exercise on abdominal fat in postmenopausal women – a randomised trial

Authors: Willemijn A. van Gemert, Petra H. Peeters, Anne M. May, Adriaan J. H. Doornbos, Sjoerd G. Elias, Job van der Palen, Wouter Veldhuis, Maaike Stapper, Jantine A. Schuit, Evelyn M. Monninkhof

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

We assessed the effect of equivalent weight loss with or without exercise on (intra-) abdominal fat in postmenopausal women in the SHAPE-2 study.

Methods

The SHAPE-2 study is a three-armed randomised controlled trial conducted in 2012–2013 in the Netherlands. Postmenopausal overweight women were randomized to a diet (n = 97), exercise plus diet (n = 98) or control group (n = 48). Both intervention groups aimed for equivalent weight loss (6–7%) following a calorie-restricted diet (diet group) or a partly supervised intensive exercise programme (4 h per week) combined with a small caloric restriction (exercise plus diet group). Outcomes after 16 weeks are amount and distribution of abdominal fat, measured by magnetic resonance imaging (MRI) with the use of the three-point IDEAL Dixon method.

Results

The diet and exercise plus diet group lost 6.1 and 6.9% body weight, respectively. Compared to controls, subcutaneous and intra-abdominal fat reduced significantly with both diet (− 12.5% and − 12.0%) and exercise plus diet (− 16.0% and − 14.6%). Direct comparison between both interventions revealed that the reduction in subcutaneous fat was statistically significantly larger in the group that combined exercise with diet: an additional 10.6 cm2 (95%CI -18.7; − 2.4) was lost compared to the diet-only group. Intra-abdominal fat loss was not significantly larger in the exercise plus diet group (− 3.8 cm2, 95%CI -9.0; 1.3).

Conclusions

We conclude that weight loss of 6–7% with diet or with exercise plus diet reduced both subcutaneous and intra-abdominal fat. Only subcutaneous fat statistically significantly reduced to a larger extent when exercise is combined with a small caloric restriction.

Trial register

NCT01511276 (clinicaltrials.gov), prospectively registered.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Obesity and overweight fact sheet. 2017. World Health Organization. Obesity and overweight fact sheet. 2017.
2.
go back to reference Lambrinoudaki I, Brincat M, Erel CT, Gambacciani M, Moen MH, Schenck-Gustafsson K, et al. EMAS position statement: managing obese postmenopausal women. Maturitas. 2010;66:323–6.CrossRef Lambrinoudaki I, Brincat M, Erel CT, Gambacciani M, Moen MH, Schenck-Gustafsson K, et al. EMAS position statement: managing obese postmenopausal women. Maturitas. 2010;66:323–6.CrossRef
3.
go back to reference Neilson HK, Friedenreich CM, Brockton NT, Millikan RC. Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomark Prev. 2009;18:11–27.CrossRef Neilson HK, Friedenreich CM, Brockton NT, Millikan RC. Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomark Prev. 2009;18:11–27.CrossRef
4.
go back to reference Carmienke S, Freitag MH, Pischon T, Schlattmann P, Fankhaenel T, Goebel H, et al. General and abdominal obesity parameters and their combination in relation to mortality: a systematic review and meta-regression analysis. Eur J Clin Nutr. 2013;67:573–85.CrossRef Carmienke S, Freitag MH, Pischon T, Schlattmann P, Fankhaenel T, Goebel H, et al. General and abdominal obesity parameters and their combination in relation to mortality: a systematic review and meta-regression analysis. Eur J Clin Nutr. 2013;67:573–85.CrossRef
5.
go back to reference Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–9.CrossRef Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–9.CrossRef
8.
go back to reference Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.CrossRef Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.CrossRef
9.
go back to reference Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13:68–91.CrossRef Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13:68–91.CrossRef
10.
go back to reference Garcia-Unciti M, Izquierdo M, Idoate F, Gorostiaga E, Grijalba A, Ortega-Delgado F, et al. Weight-loss diet alone or combined with progressive resistance training induces changes in association between the cardiometabolic risk profile and abdominal fat depots. Ann Nutr Metab. 2012;61:296–304.CrossRef Garcia-Unciti M, Izquierdo M, Idoate F, Gorostiaga E, Grijalba A, Ortega-Delgado F, et al. Weight-loss diet alone or combined with progressive resistance training induces changes in association between the cardiometabolic risk profile and abdominal fat depots. Ann Nutr Metab. 2012;61:296–304.CrossRef
11.
go back to reference Nicklas BJ, Wang X, You T, Lyles MF, Demons J, Easter L, et al. Effect of exercise intensity on abdominal fat loss during calorie restriction in overweight and obese postmenopausal women: a randomized, controlled trial. Am J Clin Nutr. 2009;89:1043–52.CrossRef Nicklas BJ, Wang X, You T, Lyles MF, Demons J, Easter L, et al. Effect of exercise intensity on abdominal fat loss during calorie restriction in overweight and obese postmenopausal women: a randomized, controlled trial. Am J Clin Nutr. 2009;89:1043–52.CrossRef
12.
go back to reference Ryan AS, Ge S, Blumenthal JB, Serra MC, Prior SJ, Goldberg AP. Aerobic exercise and weight loss reduce vascular markers of inflammation and improve insulin sensitivity in obese women. J Am Geriatr Soc. 2014;62:607–14.CrossRef Ryan AS, Ge S, Blumenthal JB, Serra MC, Prior SJ, Goldberg AP. Aerobic exercise and weight loss reduce vascular markers of inflammation and improve insulin sensitivity in obese women. J Am Geriatr Soc. 2014;62:607–14.CrossRef
13.
go back to reference Friedenreich CM, Neilson HK, O'Reilly R, Duha A, Yasui Y, Morielli AR, et al. Effects of a high vs moderate volume of aerobic exercise on adiposity outcomes in postmenopausal women: a randomized clinical trial. JAMA Oncol. 2015;1:766–76.CrossRef Friedenreich CM, Neilson HK, O'Reilly R, Duha A, Yasui Y, Morielli AR, et al. Effects of a high vs moderate volume of aerobic exercise on adiposity outcomes in postmenopausal women: a randomized clinical trial. JAMA Oncol. 2015;1:766–76.CrossRef
14.
go back to reference van Gemert WA, May AM, Schuit AJ, Oosterhof BY, Peeters PH, Monninkhof EM. Effect of weight loss with or without exercise on inflammatory markers and Adipokines in postmenopausal women: the SHAPE-2 trial, a randomized controlled trial. Cancer Epidemiol Biomark Prev. 2016;25:799–806.CrossRef van Gemert WA, May AM, Schuit AJ, Oosterhof BY, Peeters PH, Monninkhof EM. Effect of weight loss with or without exercise on inflammatory markers and Adipokines in postmenopausal women: the SHAPE-2 trial, a randomized controlled trial. Cancer Epidemiol Biomark Prev. 2016;25:799–806.CrossRef
15.
go back to reference van Gemert WA, Schuit AJ, Van der Palen J, May AM, Iestra JA, Wittink H, et al. Effect of weight loss, with or without exercise, on body composition and sex hormones in postmenopausal women: the SHAPE-2 trial. Breast Cancer Res. 2015;17:120.CrossRef van Gemert WA, Schuit AJ, Van der Palen J, May AM, Iestra JA, Wittink H, et al. Effect of weight loss, with or without exercise, on body composition and sex hormones in postmenopausal women: the SHAPE-2 trial. Breast Cancer Res. 2015;17:120.CrossRef
16.
go back to reference van Gemert WA, Iestra JI, Schuit AJ, May AM, Takken T, Veldhuis WB, et al. Design of the SHAPE-2 study: the effect of physical activity, in addition to weight loss, on biomarkers of postmenopausal breast cancer risk. BMC Cancer. 2013;13:395.CrossRef van Gemert WA, Iestra JI, Schuit AJ, May AM, Takken T, Veldhuis WB, et al. Design of the SHAPE-2 study: the effect of physical activity, in addition to weight loss, on biomarkers of postmenopausal breast cancer risk. BMC Cancer. 2013;13:395.CrossRef
17.
go back to reference Willemijn A.M.van Gemert. Exercise, weight loss and biomarkers for breast cancer risk. ISBN: 978–94–6259-499-9; 22-1-2015. Willemijn A.M.van Gemert. Exercise, weight loss and biomarkers for breast cancer risk. ISBN: 978–94–6259-499-9; 22-1-2015.
18.
go back to reference HealthCouncil of the Netherlands. Health Council of the Netherlands: Guidelines for a healthy diet 2006. 2006. The Hague. publication no. 2006/21E. HealthCouncil of the Netherlands. Health Council of the Netherlands: Guidelines for a healthy diet 2006. 2006. The Hague. publication no. 2006/21E.
19.
go back to reference Roza AM, Shizgal HM. The Harris Benedict equation reevaluated: resting energy requirements and the body cell mass. Am J Clin Nutr. 1984;40:168–82.CrossRef Roza AM, Shizgal HM. The Harris Benedict equation reevaluated: resting energy requirements and the body cell mass. Am J Clin Nutr. 1984;40:168–82.CrossRef
20.
go back to reference Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94.CrossRef Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94.CrossRef
21.
go back to reference Positano V, Cusi K, Santarelli MF, Sironi A, Petz R, Defronzo R, et al. Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging. 2008;28:403–10.CrossRef Positano V, Cusi K, Santarelli MF, Sironi A, Petz R, Defronzo R, et al. Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging. 2008;28:403–10.CrossRef
22.
go back to reference Wendel-Vos GC, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56:1163–9.CrossRef Wendel-Vos GC, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56:1163–9.CrossRef
23.
go back to reference Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res. 2004;12:789–98.CrossRef Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res. 2004;12:789–98.CrossRef
24.
go back to reference Groenwold RH, Donders AR, Roes KC, Harrell FE Jr, Moons KG. Dealing with missing outcome data in randomized trials and observational studies. Am J Epidemiol. 2012;175:210–7.CrossRef Groenwold RH, Donders AR, Roes KC, Harrell FE Jr, Moons KG. Dealing with missing outcome data in randomized trials and observational studies. Am J Epidemiol. 2012;175:210–7.CrossRef
25.
go back to reference Yoshioka M, Doucet E, St-Pierre S, Almeras N, Richard D, Labrie A, et al. Impact of high-intensity exercise on energy expenditure, lipid oxidation and body fatness. Int J Obes Relat Metab Disord. 2001;25:332–9.CrossRef Yoshioka M, Doucet E, St-Pierre S, Almeras N, Richard D, Labrie A, et al. Impact of high-intensity exercise on energy expenditure, lipid oxidation and body fatness. Int J Obes Relat Metab Disord. 2001;25:332–9.CrossRef
26.
go back to reference Imbeault P, Saint-Pierre S, Almeras N, Tremblay A. Acute effects of exercise on energy intake and feeding behaviour. Br J Nutr. 1997;77:511–21.CrossRef Imbeault P, Saint-Pierre S, Almeras N, Tremblay A. Acute effects of exercise on energy intake and feeding behaviour. Br J Nutr. 1997;77:511–21.CrossRef
27.
go back to reference Merlotti C, Ceriani V, Morabito A, Pontiroli AE. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis. Int J Obes. 2017;41:672–82.CrossRef Merlotti C, Ceriani V, Morabito A, Pontiroli AE. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis. Int J Obes. 2017;41:672–82.CrossRef
28.
go back to reference Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85:1–10.CrossRef Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85:1–10.CrossRef
Metadata
Title
Effect of diet with or without exercise on abdominal fat in postmenopausal women – a randomised trial
Authors
Willemijn A. van Gemert
Petra H. Peeters
Anne M. May
Adriaan J. H. Doornbos
Sjoerd G. Elias
Job van der Palen
Wouter Veldhuis
Maaike Stapper
Jantine A. Schuit
Evelyn M. Monninkhof
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-6510-1

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue