Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Obesity | Research article

Associations of grandparental diabetes mellitus with grandchild BMI status

Authors: Yaping Lai, Juan Qi, Xingyong Tao, Kun Huang, Shuangqin Yan, Maolin Chen, Jiahu Hao, Fangbiao Tao

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Maternal family history of diabetes was significantly and positively associated with birth weight in grandchildren, we aim to assess the effect of grandparental diabetes on the grandchild’ body mass index (BMI) at infancy peak (IP) and obesity status at age 2.

Methods

In our study, family diabetes mellitus (DM) information from Ma’anshan Birth Cohort Study (MABC) were gathered. For children, height and weight were retrieved from medical records. BMI at 6 observations (0, 3, 6, 9, 12, 18 months) was plotted for every child. Onset of IP was determined by visual inspection. BMI at age 2 was categorized according to WHO Child Growth Standards as normal, overweight or obesity. The association between maternal grandfather’ diabetes and the grandchild’ BMI at IP and BMI at age 2 were tested using linear regression models and logistic regression models, respectively.

Results

In our sample, about 6% of the maternal grandfather had DM, mean of infancy BMI peak was 18.37 kg/m2, and 6.6% of the children were obesity at age 2. Maternal grandfather with DM could significantly increase the IP BMI values (β = 0.30, 95 CI = 0.02~0.57), and was associated with obesity status at age 2 (OR = 1.92, 95 CI = 1.08~3.39), but maternal grandmother and paternal grandparents were unrelated.

Conclusion

These results suggest that DM in maternal grandfather may be a risk factor for the grandchild high BMI at peak and obesity at age 2.
Literature
1.
go back to reference FCGSLYE-MCLIBRBDRHMAGSR MJ. Excess BMI in childhood: a modifiable risk factor for type 1 diabetes development? Diabetes Care. 2017;40(5):698–701.CrossRef FCGSLYE-MCLIBRBDRHMAGSR MJ. Excess BMI in childhood: a modifiable risk factor for type 1 diabetes development? Diabetes Care. 2017;40(5):698–701.CrossRef
2.
go back to reference Liang YJ, Hou DQ, Zhao XY, Wang L, Hu YH, Liu JT, Cheng H, Yang PY, Shan XK, Yan Y, et al. Childhood obesity affects adult metabolic syndrome and diabetes. Endocrine. 2015;50(1):87–92.PubMedCrossRef Liang YJ, Hou DQ, Zhao XY, Wang L, Hu YH, Liu JT, Cheng H, Yang PY, Shan XK, Yan Y, et al. Childhood obesity affects adult metabolic syndrome and diabetes. Endocrine. 2015;50(1):87–92.PubMedCrossRef
3.
go back to reference Umer A, Kelley GA, Cottrell LE, Giacobbi P, Innes KE, Lilly CL. Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. BMC Public Health. 2017;17(1):683. Umer A, Kelley GA, Cottrell LE, Giacobbi P, Innes KE, Lilly CL. Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. BMC Public Health. 2017;17(1):683.
4.
go back to reference Johnson W, Choh AC, Lee M, Towne B, Czerwinski SA, Demerath EW. Characterization of the infant BMI peak: sex differences, birth year cohort effects, association with concurrent adiposity, and heritability. Am J Hum Biol. 2013;25(3):378–88.PubMedPubMedCentralCrossRef Johnson W, Choh AC, Lee M, Towne B, Czerwinski SA, Demerath EW. Characterization of the infant BMI peak: sex differences, birth year cohort effects, association with concurrent adiposity, and heritability. Am J Hum Biol. 2013;25(3):378–88.PubMedPubMedCentralCrossRef
5.
go back to reference Bornhorst C, Siani A, Tornaritis M, Molnar D, Lissner L, Regber S, Reisch L, De Decker A, Moreno LA, Ahrens W, et al. Potential selection effects when estimating associations between the infancy peak or adiposity rebound and later body mass index in children. Int J Obesity. 2017;41(4):518–26.CrossRef Bornhorst C, Siani A, Tornaritis M, Molnar D, Lissner L, Regber S, Reisch L, De Decker A, Moreno LA, Ahrens W, et al. Potential selection effects when estimating associations between the infancy peak or adiposity rebound and later body mass index in children. Int J Obesity. 2017;41(4):518–26.CrossRef
6.
go back to reference Silverwood RJ, De Stavola BL, Cole TJ, Leon DA. BMI peak in infancy as a predictor for later BMI in the Uppsala family study. Int J Obesity. 2009;33(8):929–37.CrossRef Silverwood RJ, De Stavola BL, Cole TJ, Leon DA. BMI peak in infancy as a predictor for later BMI in the Uppsala family study. Int J Obesity. 2009;33(8):929–37.CrossRef
7.
go back to reference Battista MC, Hivert MF, Duval K, Baillargeon JP. Intergenerational cycle of obesity and diabetes: how can we reduce the burdens of these conditions on the health of future generations? Exp Diabetes Res. 2011;2011:596060.PubMedPubMedCentralCrossRef Battista MC, Hivert MF, Duval K, Baillargeon JP. Intergenerational cycle of obesity and diabetes: how can we reduce the burdens of these conditions on the health of future generations? Exp Diabetes Res. 2011;2011:596060.PubMedPubMedCentralCrossRef
8.
go back to reference Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.PubMedCrossRef Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.PubMedCrossRef
9.
go back to reference Reversing the rising tide of diabetes in China. Lancet 2016; 388(10060):2566. Reversing the rising tide of diabetes in China. Lancet 2016; 388(10060):2566.
10.
go back to reference Katulanda P, Ranasinghe P, Jayawardena R, Sheriff R, Matthews DR. The influence of family history of diabetes on disease prevalence and associated metabolic risk factors among Sri Lankan adults. Diabet Med. 2015;32(3):314–23.PubMedCrossRef Katulanda P, Ranasinghe P, Jayawardena R, Sheriff R, Matthews DR. The influence of family history of diabetes on disease prevalence and associated metabolic risk factors among Sri Lankan adults. Diabet Med. 2015;32(3):314–23.PubMedCrossRef
11.
go back to reference Wei JN, Li HY, Wang YC, Chuang LM, Lin MS, Lin CH, Sung FC. Detailed family history of diabetes identified children at risk of type 2 diabetes: a population-based case-control study. Pediatr Diabetes. 2010;11(4):258–64.PubMedCrossRef Wei JN, Li HY, Wang YC, Chuang LM, Lin MS, Lin CH, Sung FC. Detailed family history of diabetes identified children at risk of type 2 diabetes: a population-based case-control study. Pediatr Diabetes. 2010;11(4):258–64.PubMedCrossRef
12.
go back to reference McCarron P. Type 2 diabetes in grandparents and birth weight in offspring and grandchildren in the ALSPAC study. J Epidemiol Commun H. 2004;58(6):517–22.CrossRef McCarron P. Type 2 diabetes in grandparents and birth weight in offspring and grandchildren in the ALSPAC study. J Epidemiol Commun H. 2004;58(6):517–22.CrossRef
13.
go back to reference Naess O, Stoltenberg C, Hoff DA, Nystad W, Magnus P, Tverdal A, Davey Smith G. Cardiovascular mortality in relation to birth weight of children and grandchildren in 500,000 Norwegian families. Eur Heart J. 2013;34(44):3427–36.PubMedCrossRef Naess O, Stoltenberg C, Hoff DA, Nystad W, Magnus P, Tverdal A, Davey Smith G. Cardiovascular mortality in relation to birth weight of children and grandchildren in 500,000 Norwegian families. Eur Heart J. 2013;34(44):3427–36.PubMedCrossRef
14.
go back to reference Chen LW, Aris IM, Bernard JY, Tint MT, Colega M, Gluckman PD, Tan KH, Shek LP, Chong YS, Yap F, et al. Associations of maternal macronutrient intake during pregnancy with infant BMI peak characteristics and childhood BMI. Am J Clin Nutr. 2017;105(3):705–13.PubMedCrossRef Chen LW, Aris IM, Bernard JY, Tint MT, Colega M, Gluckman PD, Tan KH, Shek LP, Chong YS, Yap F, et al. Associations of maternal macronutrient intake during pregnancy with infant BMI peak characteristics and childhood BMI. Am J Clin Nutr. 2017;105(3):705–13.PubMedCrossRef
15.
go back to reference Savona-Ventura CCM. Birth weight influence on the subsequent development of gestational diabetes mellitus. Acta Diabetol. 2003;40(2):101–4.PubMed Savona-Ventura CCM. Birth weight influence on the subsequent development of gestational diabetes mellitus. Acta Diabetol. 2003;40(2):101–4.PubMed
16.
go back to reference Ouyang FX, Parker MG, Luo ZC, Wang X, Zhang HJ, Jiang F, Wang XB, Gillman MW, Zhang J. Maternal BMI, gestational diabetes, and weight gain in relation to childhood obesity: the mediation effect of placental weight. Obesity. 2016;24(4):938–46.PubMedCrossRef Ouyang FX, Parker MG, Luo ZC, Wang X, Zhang HJ, Jiang F, Wang XB, Gillman MW, Zhang J. Maternal BMI, gestational diabetes, and weight gain in relation to childhood obesity: the mediation effect of placental weight. Obesity. 2016;24(4):938–46.PubMedCrossRef
17.
go back to reference Zhu YD, Zhu BB, Gao H, Huang K, Xu YY, Yan SQ, Zhou SS, Cai XX, Zhang QF, Qi J, et al. Repeated measures of prenatal phthalate exposure and maternal hemoglobin concentration trends: the Ma'anshan birth cohort (MABC) study. Environ Pollut. 2018;242(Pt B):1033–41.PubMedCrossRef Zhu YD, Zhu BB, Gao H, Huang K, Xu YY, Yan SQ, Zhou SS, Cai XX, Zhang QF, Qi J, et al. Repeated measures of prenatal phthalate exposure and maternal hemoglobin concentration trends: the Ma'anshan birth cohort (MABC) study. Environ Pollut. 2018;242(Pt B):1033–41.PubMedCrossRef
18.
go back to reference Kroke A, Hahn S, Buyken AE, Liese AD. A comparative evaluation of two different approaches to estimating age at adiposity rebound. Int J Obesity. 2006;30(2):261–6.CrossRef Kroke A, Hahn S, Buyken AE, Liese AD. A comparative evaluation of two different approaches to estimating age at adiposity rebound. Int J Obesity. 2006;30(2):261–6.CrossRef
19.
go back to reference SJNBHJLXW Z. Infant BMI peak as a predictor of overweight and obesity at age 2 years in a Chinese community-based cohort. BMJ Open. 2017;7(10):e015122.CrossRef SJNBHJLXW Z. Infant BMI peak as a predictor of overweight and obesity at age 2 years in a Chinese community-based cohort. BMJ Open. 2017;7(10):e015122.CrossRef
20.
go back to reference Berentzen NE, Wijga AH, van Rossem L, Koppelman GH, van Nieuwenhuizen B, Gehring U, Spijkerman AM, Smit HA. Family history of myocardial infarction, stroke and diabetes and cardiometabolic markers in children. Diabetologia. 2016;59(8):1666–74.PubMedCrossRef Berentzen NE, Wijga AH, van Rossem L, Koppelman GH, van Nieuwenhuizen B, Gehring U, Spijkerman AM, Smit HA. Family history of myocardial infarction, stroke and diabetes and cardiometabolic markers in children. Diabetologia. 2016;59(8):1666–74.PubMedCrossRef
21.
go back to reference Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology. 2010;151(12):5617–23.PubMedCrossRef Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology. 2010;151(12):5617–23.PubMedCrossRef
22.
go back to reference Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct. 2016;34(5):289–98.PubMedCrossRef Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct. 2016;34(5):289–98.PubMedCrossRef
23.
go back to reference Meier K, Recillas-Targa F. New insights on the role of DNA methylation from a global view. Front Biosci (Landmark Ed). 2017;22:644–68.CrossRef Meier K, Recillas-Targa F. New insights on the role of DNA methylation from a global view. Front Biosci (Landmark Ed). 2017;22:644–68.CrossRef
25.
go back to reference Chen Z, Li S, Subramaniam S, Shyy JY, Chien S. Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng. 2017;19:195–219.PubMedCrossRef Chen Z, Li S, Subramaniam S, Shyy JY, Chien S. Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng. 2017;19:195–219.PubMedCrossRef
26.
go back to reference Vaiserman AM, Koliada AK, Jirtle RL. Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin. 2017;10(1):38.PubMedPubMedCentralCrossRef Vaiserman AM, Koliada AK, Jirtle RL. Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin. 2017;10(1):38.PubMedPubMedCentralCrossRef
27.
go back to reference Ma RCW. Epidemiology of diabetes and diabetic complications in China. Diabetologia. 2018;61(6):1249–60.PubMedCrossRef Ma RCW. Epidemiology of diabetes and diabetic complications in China. Diabetologia. 2018;61(6):1249–60.PubMedCrossRef
28.
go back to reference Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, Li Y, Zhao Z, Qin X, Jin D, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515.PubMedPubMedCentralCrossRef Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, Li Y, Zhao Z, Qin X, Jin D, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515.PubMedPubMedCentralCrossRef
Metadata
Title
Associations of grandparental diabetes mellitus with grandchild BMI status
Authors
Yaping Lai
Juan Qi
Xingyong Tao
Kun Huang
Shuangqin Yan
Maolin Chen
Jiahu Hao
Fangbiao Tao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-6485-y

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue