Skip to main content
Top
Published in: BMC Public Health 1/2018

Open Access 01-12-2018 | Research article

Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea

Authors: Jianfei Shuai, Sunshin Kim, Hyeonsu Ryu, Jinhyeon Park, Chae Kwan Lee, Geun-Bae Kim, Venecio U. Ultra Jr, Wonho Yang

Published in: BMC Public Health | Issue 1/2018

Login to get access

Abstract

Background

Studying human health in areas with industrial contamination is a serious and complex issue. In recent years, attention has increasingly focused on the health implications of large industrial complexes. A variety of potential toxic chemicals have been produced during manufacturing processes and activities in industrial complexes in South Korea. A large number of dyeing industries gathered together in Daegu dyeing industrial complex. The residents near the industrial complex could be often exposed to volatile organic compounds. This study aimed to evaluate VOCs levels in the ambient air of DDIC, to assess the impact on human health risks, and to find more convincing evidences to prove these VOCs emitted from DDIC.

Methods

According to deterministic risk assessment, inhalation was the most important route. Residential indoor, outdoor and personal exposure air VOCs were measured by passive samplers in exposed area and controlled area in different seasons. Satisfaction with ambient environments and self-reported diseases were also obtained by questionnaire survey. The VOCs concentrations in exposed area and controlled area was compared by t-test. The relationships among every VOC were tested by correlation. The values of hazard quotient (HQ) and life cancer risk were estimated.

Results

The concentrations of measured VOCs were presented, moreover, the variety of concentrations according the distances from the residential settings to the industrial complex site in exposed area. The residential indoor, outdoor, and personal exposure concentrations of toluene, DMF and chloroform in exposed area were significantly higher than the corresponding concentrations in controlled area both in summer and autumn. Toluene, DMF, chloroform and MEK had significantly positive correlations with each other in indoor and outdoor, and even in personal exposure. The HQ for DMF exceeded 1, and the life cancer risk of chloroform was greater than 10− 4 in exposed area. The prevalence of respiratory diseases, anaphylactic diseases and cardiovascular diseases in exposed area were significantly higher than in controlled area.

Conclusions

This study showed that adverse cancer and non-cancer health effects may occur by VOCs emitted from DDIC, and some risk managements are needed. Moreover, this study provides a convenient preliminarily method for pollutants source characteristics.
Literature
1.
go back to reference Brender JD, Maantay JA, Chakraborty J. Residential proximity to environmental hazards and adverse health outcomes. Am J Public Health. 2011;101:S37–52.CrossRefPubMedPubMedCentral Brender JD, Maantay JA, Chakraborty J. Residential proximity to environmental hazards and adverse health outcomes. Am J Public Health. 2011;101:S37–52.CrossRefPubMedPubMedCentral
2.
go back to reference Yuan TH, Chio CP, Shie RH, Pien WH, Chan CC. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex. J Exposure Environ Epidemiol. 2016;26:270–6.CrossRef Yuan TH, Chio CP, Shie RH, Pien WH, Chan CC. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex. J Exposure Environ Epidemiol. 2016;26:270–6.CrossRef
3.
go back to reference Caneghem J, Block C, Vandecasteele C. Assessment of the impact on human health of industrial emissions to air: does the result depend on the applied method? J Hazard Mater. 2010;184:788–97.CrossRefPubMed Caneghem J, Block C, Vandecasteele C. Assessment of the impact on human health of industrial emissions to air: does the result depend on the applied method? J Hazard Mater. 2010;184:788–97.CrossRefPubMed
4.
go back to reference Kelly KE. Air toxics: an overview. Clean Air. 1990;24(3):100–10. Kelly KE. Air toxics: an overview. Clean Air. 1990;24(3):100–10.
5.
go back to reference Zheng J, Yu Y, Mo Z, Zhang Z, Wang X, Yin S, et al. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci Total Environ. 2013;456-457:127–36.CrossRefPubMed Zheng J, Yu Y, Mo Z, Zhang Z, Wang X, Yin S, et al. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci Total Environ. 2013;456-457:127–36.CrossRefPubMed
6.
go back to reference Zheng JY, Zhong LJ, Wang T, Louie PKK, Li Z, et al. Ground-level ozone in the Pearl River Delta region: analysis of data from a recently established regional air quality monitoring network. Atmos Environ. 2010;44:814–23.CrossRef Zheng JY, Zhong LJ, Wang T, Louie PKK, Li Z, et al. Ground-level ozone in the Pearl River Delta region: analysis of data from a recently established regional air quality monitoring network. Atmos Environ. 2010;44:814–23.CrossRef
7.
go back to reference Hagerman LM, Aneja VP, Lonneman WA. Characterization of non-methane hydrocarbons in the rural Southeast United States. Atmos Environ. 1997;31:4017–38.CrossRef Hagerman LM, Aneja VP, Lonneman WA. Characterization of non-methane hydrocarbons in the rural Southeast United States. Atmos Environ. 1997;31:4017–38.CrossRef
8.
go back to reference Niaz K, Bahadar H, Maqbool F, Abdollahi MA. Review of environmental and occupational exposure to xylene and its health concerns. Experimental and clinical. Sciences. 2015;14:1167–86. Niaz K, Bahadar H, Maqbool F, Abdollahi MA. Review of environmental and occupational exposure to xylene and its health concerns. Experimental and clinical. Sciences. 2015;14:1167–86.
9.
go back to reference HaiLin W, Lie N, Jing LI, YuFei W, Gang W, JunHui W, ZhengPing H. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Environ Chem. 2013;58(7):724-30. HaiLin W, Lie N, Jing LI, YuFei W, Gang W, JunHui W, ZhengPing H. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Environ Chem. 2013;58(7):724-30.
10.
go back to reference Rappengluck B, Fabian P. Non-methane hydrocarbons (NMHC) in the greater Munich area/Germany. Atmos Environ. 1999;33:3843–57.CrossRef Rappengluck B, Fabian P. Non-methane hydrocarbons (NMHC) in the greater Munich area/Germany. Atmos Environ. 1999;33:3843–57.CrossRef
11.
go back to reference Chen Z, Liu SJ, Cai SX, Yao YM, Yin H, Ukai H, et al. Exposure of workers to a mixture of toluene and xylenes. II. Effects. Occup Environ Med. 1994;51:47–49. Chen Z, Liu SJ, Cai SX, Yao YM, Yin H, Ukai H, et al. Exposure of workers to a mixture of toluene and xylenes. II. Effects. Occup Environ Med. 1994;51:47–49.
12.
go back to reference Filley CM, Halliday W, Kleinschmidt-Demasters BK. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol. 2004;63(1):1–12.CrossRefPubMed Filley CM, Halliday W, Kleinschmidt-Demasters BK. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol. 2004;63(1):1–12.CrossRefPubMed
13.
go back to reference Eller N, Netterstrom B, Laursen P. Risk of chronic effects on the central nervous system at low toluene exposure. Occup Med. 1999;49(6):389–95.CrossRef Eller N, Netterstrom B, Laursen P. Risk of chronic effects on the central nervous system at low toluene exposure. Occup Med. 1999;49(6):389–95.CrossRef
14.
go back to reference Kandyala R, Raghavendra SPC, Rajasekharan ST. Xylene: an overview of its health hazards and preventive measures. J. Oral Maxillofac. Pathol. 2010;14(1):1–5.CrossRefPubMedPubMedCentral Kandyala R, Raghavendra SPC, Rajasekharan ST. Xylene: an overview of its health hazards and preventive measures. J. Oral Maxillofac. Pathol. 2010;14(1):1–5.CrossRefPubMedPubMedCentral
15.
go back to reference Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Chloroform. U.S Department of Health and Human Services, Public Health Service. Georgia: Agency for Toxic Substances and Disease Registry Atlanta; 1997. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Chloroform. U.S Department of Health and Human Services, Public Health Service. Georgia: Agency for Toxic Substances and Disease Registry Atlanta; 1997.
16.
go back to reference Wicks ZW, Jones FN, Pappas SP, Wicks DA. Organic coatings: science and technology. 3rd ed. New Jersey: John Wiley & Sons, Inc; 2006. Wicks ZW, Jones FN, Pappas SP, Wicks DA. Organic coatings: science and technology. 3rd ed. New Jersey: John Wiley & Sons, Inc; 2006.
17.
go back to reference Ho KF, Lee SC. Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in Hong Kong. Sci Total Environ. 2002;289:145–58.CrossRefPubMed Ho KF, Lee SC. Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in Hong Kong. Sci Total Environ. 2002;289:145–58.CrossRefPubMed
18.
go back to reference Lioy PJ, Weisel CP, Jo WK, Raymer JH. Microenvironmental and Personal measurements of methyl-tertiary-butyl-ether (MTBE) associated with automobile use activities. J. Expo. Anal. Environ. Epidemiol. 1994;4:427–41. Lioy PJ, Weisel CP, Jo WK, Raymer JH. Microenvironmental and Personal measurements of methyl-tertiary-butyl-ether (MTBE) associated with automobile use activities. J. Expo. Anal. Environ. Epidemiol. 1994;4:427–41.
20.
go back to reference Morawska L, Tomas S, Bofinger N, Wainwright D, Neale D. Comprehensive characterization of aerosols in a subtropical urban atmospheric: particles size distribution and correlation with gaseous pollutants. Atmos Environ. 1998;32:2467–78.CrossRef Morawska L, Tomas S, Bofinger N, Wainwright D, Neale D. Comprehensive characterization of aerosols in a subtropical urban atmospheric: particles size distribution and correlation with gaseous pollutants. Atmos Environ. 1998;32:2467–78.CrossRef
21.
go back to reference Gee IL, Sollars CJ. Ambient air levels of volatile organic compounds in Latin-American and Asian cities. Chemosphere. 1998;36:2497–506.CrossRef Gee IL, Sollars CJ. Ambient air levels of volatile organic compounds in Latin-American and Asian cities. Chemosphere. 1998;36:2497–506.CrossRef
22.
go back to reference Brocco D, Fratarcangeli R, Lepore L, Petricca M, Ventrone I. Determination of aromatic hydrocarbons in urban air of Rome. Atmos Environ. 1997;31:557–66.CrossRef Brocco D, Fratarcangeli R, Lepore L, Petricca M, Ventrone I. Determination of aromatic hydrocarbons in urban air of Rome. Atmos Environ. 1997;31:557–66.CrossRef
23.
go back to reference Clarkson TS, Martin RJ, Rudolph J. Benzene and toluene in New Zealand air. Atmos Environ. 1996;30:569–77.CrossRef Clarkson TS, Martin RJ, Rudolph J. Benzene and toluene in New Zealand air. Atmos Environ. 1996;30:569–77.CrossRef
24.
go back to reference Pekey H, Pekey B, Arslanbas D, Bozkurt Z, Dogan G, Tuncel G. Source identification of volatile organic compounds and particulate matters in an urban and industrial areas of Turkey. Ekoloji. 2015;24:1–9. Pekey H, Pekey B, Arslanbas D, Bozkurt Z, Dogan G, Tuncel G. Source identification of volatile organic compounds and particulate matters in an urban and industrial areas of Turkey. Ekoloji. 2015;24:1–9.
25.
go back to reference Ho KF, Lee SC, Guo H, Tsai WY. Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ. 2004;322:155–66.CrossRefPubMed Ho KF, Lee SC, Guo H, Tsai WY. Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ. 2004;322:155–66.CrossRefPubMed
26.
go back to reference Jo WK, Lee JW, Shin DC. Exposure to volatile organic compounds in residences adjacent to dyeing industrial complex. Int. Arch. Occup. Environ. Health. 2004;77:113–20.CrossRefPubMed Jo WK, Lee JW, Shin DC. Exposure to volatile organic compounds in residences adjacent to dyeing industrial complex. Int. Arch. Occup. Environ. Health. 2004;77:113–20.CrossRefPubMed
28.
go back to reference Park KH, Jo WK. Personal volatile organic compound (VOC) exposure of children attending elementary schools adjacent to industrial complex. Atmos Environ. 2004;38:1303–12.CrossRef Park KH, Jo WK. Personal volatile organic compound (VOC) exposure of children attending elementary schools adjacent to industrial complex. Atmos Environ. 2004;38:1303–12.CrossRef
Metadata
Title
Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea
Authors
Jianfei Shuai
Sunshin Kim
Hyeonsu Ryu
Jinhyeon Park
Chae Kwan Lee
Geun-Bae Kim
Venecio U. Ultra Jr
Wonho Yang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2018
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-5454-1

Other articles of this Issue 1/2018

BMC Public Health 1/2018 Go to the issue