Skip to main content
Top
Published in: BMC Public Health 1/2018

Open Access 01-12-2018 | Research article

Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review

Authors: Faruque Ahmed, Nicole Zviedrite, Amra Uzicanin

Published in: BMC Public Health | Issue 1/2018

Login to get access

Abstract

Background

Social distancing is one of the community mitigation measures that may be recommended during influenza pandemics. Social distancing can reduce virus transmission by increasing physical distance or reducing frequency of congregation in socially dense community settings, such as schools or workplaces. We conducted a systematic review to assess the evidence that social distancing in non-healthcare workplaces reduces or slows influenza transmission.

Methods

Electronic searches were conducted using MEDLINE, Embase, Scopus, Cochrane Library, PsycINFO, CINAHL, NIOSHTIC-2, and EconLit to identify studies published in English from January 1, 2000, through May 3, 2017. Data extraction was done by two reviewers independently. A narrative synthesis was performed.

Results

Fifteen studies, representing 12 modeling and three epidemiological, met the eligibility criteria. The epidemiological studies showed that social distancing was associated with a reduction in influenza-like illness and seroconversion to 2009 influenza A (H1N1). However, the overall risk of bias in the epidemiological studies was serious. The modeling studies estimated that workplace social distancing measures alone produced a median reduction of 23% in the cumulative influenza attack rate in the general population. It also delayed and reduced the peak influenza attack rate. The reduction in the cumulative attack rate was more pronounced when workplace social distancing was combined with other nonpharmaceutical or pharmaceutical interventions. However, the effectiveness was estimated to decline with higher basic reproduction number values, delayed triggering of workplace social distancing, or lower compliance.

Conclusions

Modeling studies support social distancing in non-healthcare workplaces, but there is a paucity of well-designed epidemiological studies.

Systematic review registration number

PROSPERO registration # CRD42017065310.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reed C, Biggerstaff M, Finelli L, Koonin LM, Beauvais D, Uzicanin A, et al. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg Infect Dis. 2013;19:85–91.CrossRefPubMedPubMedCentral Reed C, Biggerstaff M, Finelli L, Koonin LM, Beauvais D, Uzicanin A, et al. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg Infect Dis. 2013;19:85–91.CrossRefPubMedPubMedCentral
2.
go back to reference Meltzer MI, Cox NJ, Fukuda K. The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis. 1999;5:659–71.CrossRefPubMedPubMedCentral Meltzer MI, Cox NJ, Fukuda K. The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis. 1999;5:659–71.CrossRefPubMedPubMedCentral
3.
go back to reference Qualls N, Levitt A, Kanade N, Wright-Jegede N, Dopson S, Biggerstaff M, et al. Community mitigation guidelines to prevent pandemic influenza - United States, 2017. Morbidity & Mortality Weekly Report Recommendations & Reports. 2017;66:1–34.CrossRef Qualls N, Levitt A, Kanade N, Wright-Jegede N, Dopson S, Biggerstaff M, et al. Community mitigation guidelines to prevent pandemic influenza - United States, 2017. Morbidity & Mortality Weekly Report Recommendations & Reports. 2017;66:1–34.CrossRef
6.
go back to reference Jackson C, Mangtani P, Hawker J, Olowokure B, Vynnycky E. The effects of school closures on influenza outbreaks and pandemics: systematic review of simulation studies. PLoS One. 2014;9:e97297.CrossRefPubMedPubMedCentral Jackson C, Mangtani P, Hawker J, Olowokure B, Vynnycky E. The effects of school closures on influenza outbreaks and pandemics: systematic review of simulation studies. PLoS One. 2014;9:e97297.CrossRefPubMedPubMedCentral
9.
go back to reference Edwards CH, Tomba GS, de Blasio BF. Influenza in workplaces: transmission, workers’ adherence to sick leave advice and European sick leave recommendations. Eur J Pub Health. 2016;26:478–85.CrossRef Edwards CH, Tomba GS, de Blasio BF. Influenza in workplaces: transmission, workers’ adherence to sick leave advice and European sick leave recommendations. Eur J Pub Health. 2016;26:478–85.CrossRef
11.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.CrossRefPubMedPubMedCentral Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.CrossRefPubMedPubMedCentral
12.
go back to reference Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.CrossRefPubMedPubMedCentral Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.CrossRefPubMedPubMedCentral
14.
go back to reference Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14:480.CrossRefPubMedPubMedCentral Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14:480.CrossRefPubMedPubMedCentral
15.
go back to reference Andradottir S, Chiu W, Goldsman D, Lee ML. Simulation of influenza propagation: model development, parameter estimation, and mitigation strategies. IIE Transactions on Healthcare Systems Engineering. 2014;4:27–48.CrossRef Andradottir S, Chiu W, Goldsman D, Lee ML. Simulation of influenza propagation: model development, parameter estimation, and mitigation strategies. IIE Transactions on Healthcare Systems Engineering. 2014;4:27–48.CrossRef
16.
go back to reference Carrat F, Luong J, Lao H, Salle AV, Lajaunie C, Wackernagel H. A ‘small-world-like’ model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Med. 2006;4:26.CrossRefPubMedPubMedCentral Carrat F, Luong J, Lao H, Salle AV, Lajaunie C, Wackernagel H. A ‘small-world-like’ model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Med. 2006;4:26.CrossRefPubMedPubMedCentral
17.
go back to reference Ciofi degli Atti ML, Merler S, Rizzo C, Ajelli M, Massari M, Manfredi P, Furlanello C, et al. Mitigation measures for pandemic influenza in Italy: an individual based model considering different scenarios. PLoS One. 2008;3:e1790.CrossRefPubMedPubMedCentral Ciofi degli Atti ML, Merler S, Rizzo C, Ajelli M, Massari M, Manfredi P, Furlanello C, et al. Mitigation measures for pandemic influenza in Italy: an individual based model considering different scenarios. PLoS One. 2008;3:e1790.CrossRefPubMedPubMedCentral
18.
go back to reference Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437:209–14.CrossRefPubMed Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437:209–14.CrossRefPubMed
19.
go back to reference Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic. Nature. 2006;442:448–52.CrossRefPubMed Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic. Nature. 2006;442:448–52.CrossRefPubMed
20.
go back to reference Halder N, Kelso JK, Milne GJ. Cost-effective strategies for mitigating a future influenza pandemic with H1N1 2009 characteristics. PLoS One. 2011;6:e22087.CrossRefPubMedPubMedCentral Halder N, Kelso JK, Milne GJ. Cost-effective strategies for mitigating a future influenza pandemic with H1N1 2009 characteristics. PLoS One. 2011;6:e22087.CrossRefPubMedPubMedCentral
21.
go back to reference Mao L. Predicting self-initiated preventive behavior against epidemics with an agent-based relative agreement model. JASSS. 2015;18(4) Mao L. Predicting self-initiated preventive behavior against epidemics with an agent-based relative agreement model. JASSS. 2015;18(4)
22.
go back to reference Merler S, Jurman G, Furlanello C, Rizzo C, Bella A, Massari M, et al. Strategies for containing an influenza pandemic: the case of Italy. In: 2006 1st bio-inspired models of network, information and computing systems, BIONETICS: 2006; 2006. Merler S, Jurman G, Furlanello C, Rizzo C, Bella A, Massari M, et al. Strategies for containing an influenza pandemic: the case of Italy. In: 2006 1st bio-inspired models of network, information and computing systems, BIONETICS: 2006; 2006.
23.
go back to reference Rizzo C, Lunelli A, Pugliese A, Bella A, Manfredi P, Tomba GS, et al. Scenarios of diffusion and control of an influenza pandemic in Italy. Epidemiol Infect. 2008;136:1650–7.CrossRefPubMedPubMedCentral Rizzo C, Lunelli A, Pugliese A, Bella A, Manfredi P, Tomba GS, et al. Scenarios of diffusion and control of an influenza pandemic in Italy. Epidemiol Infect. 2008;136:1650–7.CrossRefPubMedPubMedCentral
24.
go back to reference Roberts MG, Baker M, Jennings LC, Sertsou G, Wilson N. A model for the spread and control of pandemic influenza in an isolated geographical region. J R Soc Interface. 2007;4:325–30.CrossRefPubMed Roberts MG, Baker M, Jennings LC, Sertsou G, Wilson N. A model for the spread and control of pandemic influenza in an isolated geographical region. J R Soc Interface. 2007;4:325–30.CrossRefPubMed
25.
go back to reference Xia H, Nagaraj K, Chen J, Marathe MV. Synthesis of a high resolution social contact network for Delhi with application to pandemic planning. Artif Intell Med. 2015;65:113–30.CrossRefPubMedPubMedCentral Xia H, Nagaraj K, Chen J, Marathe MV. Synthesis of a high resolution social contact network for Delhi with application to pandemic planning. Artif Intell Med. 2015;65:113–30.CrossRefPubMedPubMedCentral
26.
27.
go back to reference Rousculp MD, Johnston SS, Palmer LA, Chu BC, Mahadevia PJ, Nichol KL. Attending work while sick: implication of flexible sick leave policies. J Occup Environ Med. 2010;52:1009–13.CrossRefPubMed Rousculp MD, Johnston SS, Palmer LA, Chu BC, Mahadevia PJ, Nichol KL. Attending work while sick: implication of flexible sick leave policies. J Occup Environ Med. 2010;52:1009–13.CrossRefPubMed
28.
go back to reference Kumar S, Quinn SC, Kim KH, Daniel LH, Freimuth VS. The impact of workplace policies and other social factors on self-reported influenza-like illness incidence during the 2009 H1N1 pandemic. Am J Public Health. 2012;102:134–40.CrossRefPubMedPubMedCentral Kumar S, Quinn SC, Kim KH, Daniel LH, Freimuth VS. The impact of workplace policies and other social factors on self-reported influenza-like illness incidence during the 2009 H1N1 pandemic. Am J Public Health. 2012;102:134–40.CrossRefPubMedPubMedCentral
29.
go back to reference Lee V, Yap J, Cook AR, Chen M, Tay J, Barr I, et al. Effectiveness of public health measures in mitigating pandemic influenza spread: a prospective sero-epidemiological cohort study. J Infect Dis. 2010;202:1319–26.CrossRefPubMed Lee V, Yap J, Cook AR, Chen M, Tay J, Barr I, et al. Effectiveness of public health measures in mitigating pandemic influenza spread: a prospective sero-epidemiological cohort study. J Infect Dis. 2010;202:1319–26.CrossRefPubMed
30.
go back to reference Timpka T, Eriksson H, Holm E, Stromgren M, Ekberg J, Spreco A, et al. Relevance of workplace social mixing during influenza pandemics: an experimental modelling study of workplace cultures. Epidemiol Infect. 2016;144:2031–42.CrossRefPubMed Timpka T, Eriksson H, Holm E, Stromgren M, Ekberg J, Spreco A, et al. Relevance of workplace social mixing during influenza pandemics: an experimental modelling study of workplace cultures. Epidemiol Infect. 2016;144:2031–42.CrossRefPubMed
31.
go back to reference Zhang T, Fu X, Ma S, Xiao G, Wong L, Kwoh CK, et al. Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza. PLoS One. 2012;7:e32203.CrossRefPubMedPubMedCentral Zhang T, Fu X, Ma S, Xiao G, Wong L, Kwoh CK, et al. Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza. PLoS One. 2012;7:e32203.CrossRefPubMedPubMedCentral
33.
34.
go back to reference Milne GJ, Kelso JK, Kelly HA, Huband ST, McVernon J. A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic. PLoS One. 2008;3:e4005.CrossRefPubMedPubMedCentral Milne GJ, Kelso JK, Kelly HA, Huband ST, McVernon J. A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic. PLoS One. 2008;3:e4005.CrossRefPubMedPubMedCentral
35.
go back to reference Milne GJ, Baskaran P, Halder N, Karl S, Kelso J. Pandemic influenza in Papua New Guinea: a modelling study comparison with pandemic spread in a developed country. BMJ Open. 2013;3(3) Milne GJ, Baskaran P, Halder N, Karl S, Kelso J. Pandemic influenza in Papua New Guinea: a modelling study comparison with pandemic spread in a developed country. BMJ Open. 2013;3(3)
36.
go back to reference Miller G, Randolph S, Patterson JE. Responding to simulated pandemic influenza in San Antonio, Texas. Infection Control & Hospital Epidemiology. 2008;29:320–6.CrossRef Miller G, Randolph S, Patterson JE. Responding to simulated pandemic influenza in San Antonio, Texas. Infection Control & Hospital Epidemiology. 2008;29:320–6.CrossRef
37.
go back to reference Andradottir S, Chiu W, Goldsman D, Lee ML, Tsui KL, Sander B, et al. Reactive strategies for containing developing outbreaks of pandemic influenza. BMC Public Health. 2011;11(Suppl 1):S1.CrossRefPubMedPubMedCentral Andradottir S, Chiu W, Goldsman D, Lee ML, Tsui KL, Sander B, et al. Reactive strategies for containing developing outbreaks of pandemic influenza. BMC Public Health. 2011;11(Suppl 1):S1.CrossRefPubMedPubMedCentral
38.
go back to reference Perlroth DJ, Glass RJ, Davey VJ, Cannon D, Garber AM, Owens DK. Health outcomes and costs of community mitigation strategies for an influenza pandemic in the United States. Clin Infect Dis. 2010;50:165–74.CrossRefPubMed Perlroth DJ, Glass RJ, Davey VJ, Cannon D, Garber AM, Owens DK. Health outcomes and costs of community mitigation strategies for an influenza pandemic in the United States. Clin Infect Dis. 2010;50:165–74.CrossRefPubMed
39.
go back to reference Halloran ME, Ferguson NM, Eubank S, Longini IM Jr, Cummings DA, Lewis B, et al. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci U S A. 2008;105:4639–44.CrossRefPubMedPubMedCentral Halloran ME, Ferguson NM, Eubank S, Longini IM Jr, Cummings DA, Lewis B, et al. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci U S A. 2008;105:4639–44.CrossRefPubMedPubMedCentral
40.
go back to reference Kelso JK, Milne GJ, Kelly H. Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. BMC Public Health. 2009;9:117.CrossRefPubMedPubMedCentral Kelso JK, Milne GJ, Kelly H. Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. BMC Public Health. 2009;9:117.CrossRefPubMedPubMedCentral
41.
go back to reference Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 8. Rating the quality of evidence--indirectness. J Clin Epidemiol. 2011;64:1303–10.CrossRefPubMed Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 8. Rating the quality of evidence--indirectness. J Clin Epidemiol. 2011;64:1303–10.CrossRefPubMed
42.
go back to reference Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. Transmission of influenza A in human beings. Lancet Infect Dis. 2007;7:257–65. Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. Transmission of influenza A in human beings. Lancet Infect Dis. 2007;7:257–65.
43.
go back to reference Bischoff WE, Swett K, Leng I, Peters TR. Exposure to influenza virus aerosols during routine patient care. J Infect Dis. 2013;207:1037–46.CrossRefPubMed Bischoff WE, Swett K, Leng I, Peters TR. Exposure to influenza virus aerosols during routine patient care. J Infect Dis. 2013;207:1037–46.CrossRefPubMed
44.
go back to reference Cowling BJ, Ip DK, Fang VJ, Suntarattiwong P, Olsen SJ, Levy J, et al. Modes of transmission of influenza B virus in households. PLoS One. 2014;9:e108850.CrossRefPubMedPubMedCentral Cowling BJ, Ip DK, Fang VJ, Suntarattiwong P, Olsen SJ, Levy J, et al. Modes of transmission of influenza B virus in households. PLoS One. 2014;9:e108850.CrossRefPubMedPubMedCentral
45.
go back to reference Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci U S A. 2018;115:1081–6.CrossRefPubMedPubMedCentral Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci U S A. 2018;115:1081–6.CrossRefPubMedPubMedCentral
46.
go back to reference Barrios LC, Koonin LM, Kohl KS, Cetron M. Selecting nonpharmaceutical strategies to minimize influenza spread: the 2009 influenza a (H1N1) pandemic and beyond. Public Health Rep. 2012;127:565–71.CrossRefPubMedPubMedCentral Barrios LC, Koonin LM, Kohl KS, Cetron M. Selecting nonpharmaceutical strategies to minimize influenza spread: the 2009 influenza a (H1N1) pandemic and beyond. Public Health Rep. 2012;127:565–71.CrossRefPubMedPubMedCentral
47.
go back to reference Fischer LS, Santibanez S, Hatchett RJ, Jernigan DB, Meyers LA, Thorpe PG, et al. CDC grand rounds: modeling and public health decision-making. MMWR Morb Mortal Wkly Rep. 2016;65:1374–7.CrossRefPubMed Fischer LS, Santibanez S, Hatchett RJ, Jernigan DB, Meyers LA, Thorpe PG, et al. CDC grand rounds: modeling and public health decision-making. MMWR Morb Mortal Wkly Rep. 2016;65:1374–7.CrossRefPubMed
48.
go back to reference Prieto DM, Das TK, Savachkin AA, Uribe A, Izurieta R, Malavade S. A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels. BMC Public Health. 2012;12:251.CrossRefPubMedPubMedCentral Prieto DM, Das TK, Savachkin AA, Uribe A, Izurieta R, Malavade S. A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels. BMC Public Health. 2012;12:251.CrossRefPubMedPubMedCentral
49.
go back to reference Lee VJ, Lye DC, Wilder-Smith A. Combination strategies for pandemic influenza response - a systematic review of mathematical modeling studies. BMC Med. 2009;7:76.CrossRefPubMedPubMedCentral Lee VJ, Lye DC, Wilder-Smith A. Combination strategies for pandemic influenza response - a systematic review of mathematical modeling studies. BMC Med. 2009;7:76.CrossRefPubMedPubMedCentral
50.
go back to reference Saunders-Hastings P, Reisman J, Krewski D. Assessing the state of knowledge regarding the effectiveness of interventions to contain pandemic influenza transmission: a systematic review and narrative synthesis. PLoS One. 2016;11:e0168262.CrossRefPubMedPubMedCentral Saunders-Hastings P, Reisman J, Krewski D. Assessing the state of knowledge regarding the effectiveness of interventions to contain pandemic influenza transmission: a systematic review and narrative synthesis. PLoS One. 2016;11:e0168262.CrossRefPubMedPubMedCentral
54.
go back to reference Collinson S, Khan K, Heffernan JM. The effects of media reports on disease spread and important public health measurements. PLoS One. 2015;10:e0141423.CrossRefPubMedPubMedCentral Collinson S, Khan K, Heffernan JM. The effects of media reports on disease spread and important public health measurements. PLoS One. 2015;10:e0141423.CrossRefPubMedPubMedCentral
Metadata
Title
Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review
Authors
Faruque Ahmed
Nicole Zviedrite
Amra Uzicanin
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2018
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-5446-1

Other articles of this Issue 1/2018

BMC Public Health 1/2018 Go to the issue