Skip to main content
Top
Published in: BMC Public Health 1/2018

Open Access 01-12-2018 | Research article

The surprising implications of familial association in disease risk

Authors: Morten Valberg, Mats Julius Stensrud, Odd O. Aalen

Published in: BMC Public Health | Issue 1/2018

Login to get access

Abstract

Background

A wide range of diseases show some degree of clustering in families; family history is therefore an important aspect for clinicians when making risk predictions. Familial aggregation is often quantified in terms of a familial relative risk (FRR), and although at first glance this measure may seem simple and intuitive as an average risk prediction, its implications are not straightforward.

Methods

We use two statistical models for the distribution of disease risk in a population: a dichotomous risk model that gives an intuitive understanding of the implication of a given FRR, and a continuous risk model that facilitates a more detailed computation of the inequalities in disease risk. Published estimates of FRRs are used to produce Lorenz curves and Gini indices that quantifies the inequalities in risk for a range of diseases.

Results

We demonstrate that even a moderate familial association in disease risk implies a very large difference in risk between individuals in the population. We give examples of diseases for which this is likely to be true, and we further demonstrate the relationship between the point estimates of FRRs and the distribution of risk in the population.

Conclusions

The variation in risk for several severe diseases may be larger than the variation in income in many countries. The implications of familial risk estimates should be recognized by epidemiologists and clinicians.
Literature
1.
go back to reference Aalen OO, Valberg M, Grotmol T, Tretli S. Understanding variation in disease risk: the elusive concept of frailty. Int J Epidemiol. 2014; 44:1408–21.CrossRefPubMedPubMedCentral Aalen OO, Valberg M, Grotmol T, Tretli S. Understanding variation in disease risk: the elusive concept of frailty. Int J Epidemiol. 2014; 44:1408–21.CrossRefPubMedPubMedCentral
2.
3.
go back to reference Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015; 347(6217):78–81.CrossRefPubMedPubMedCentral Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015; 347(6217):78–81.CrossRefPubMedPubMedCentral
4.
go back to reference Stensrud MJ, Strohmaier S, Valberg M, Aalen OO. Can chance cause cancer? A causal consideration. Eur J Cancer. 2017; 75:83–5.CrossRefPubMed Stensrud MJ, Strohmaier S, Valberg M, Aalen OO. Can chance cause cancer? A causal consideration. Eur J Cancer. 2017; 75:83–5.CrossRefPubMed
5.
go back to reference Riley BD, Culver JO, Skrzynia C, Senter LA, Peters JA, Costalas JW, et al.Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors. J Genet Counsel. 2012; 21(2):151–61.CrossRef Riley BD, Culver JO, Skrzynia C, Senter LA, Peters JA, Costalas JW, et al.Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors. J Genet Counsel. 2012; 21(2):151–61.CrossRef
8.
go back to reference Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet. 2009; 17(6):722–31.CrossRefPubMed Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet. 2009; 17(6):722–31.CrossRefPubMed
9.
go back to reference Johns L, Houlston R. A systematic review and meta-analysis of familial prostate cancer risk. BJU Int. 2003; 91(9):789–94.CrossRefPubMed Johns L, Houlston R. A systematic review and meta-analysis of familial prostate cancer risk. BJU Int. 2003; 91(9):789–94.CrossRefPubMed
10.
go back to reference Hemminki K, Li X, Sundquist J, Sundquist K. Familial risks for amyotrophic lateral sclerosis and autoimmune diseases. Neurogenetics. 2009; 10(2):111.CrossRefPubMed Hemminki K, Li X, Sundquist J, Sundquist K. Familial risks for amyotrophic lateral sclerosis and autoimmune diseases. Neurogenetics. 2009; 10(2):111.CrossRefPubMed
11.
go back to reference Marder K, Tang MX, Mejia H, Alfaro B, Cote L, Louis E, et al.Risk of Parkinson’s disease among first-degree relatives A community-based study. Neurology. 1996; 47(1):155–60.CrossRefPubMed Marder K, Tang MX, Mejia H, Alfaro B, Cote L, Louis E, et al.Risk of Parkinson’s disease among first-degree relatives A community-based study. Neurology. 1996; 47(1):155–60.CrossRefPubMed
12.
go back to reference Khoury MJ, Beaty TH, Kung-Yee L. Can familial aggregation of disease be explained by familial aggregation of environmental risk factors?. Am J Epidemiol. 1988; 127(3):674–83.CrossRefPubMed Khoury MJ, Beaty TH, Kung-Yee L. Can familial aggregation of disease be explained by familial aggregation of environmental risk factors?. Am J Epidemiol. 1988; 127(3):674–83.CrossRefPubMed
13.
go back to reference Aalen OO. Modelling the influence of risk factors on familial aggregation of disease. Biometrics. 1991; 47(3):933–45.CrossRefPubMed Aalen OO. Modelling the influence of risk factors on familial aggregation of disease. Biometrics. 1991; 47(3):933–45.CrossRefPubMed
14.
go back to reference Hopper JL, Carlin JB. Familial aggregation of a disease consequent upon correlation between relatives in a risk factor measured on a continuous scale. Am J Epidemiol. 1992; 136(9):1138–47.CrossRefPubMed Hopper JL, Carlin JB. Familial aggregation of a disease consequent upon correlation between relatives in a risk factor measured on a continuous scale. Am J Epidemiol. 1992; 136(9):1138–47.CrossRefPubMed
15.
go back to reference Moger TA, Aalen OO, Heimdal K, Gjessing HK. Analysis of testicular cancer data using a frailty model with familial dependence. Stat Med. 2004; 23(4):617–32.CrossRefPubMed Moger TA, Aalen OO, Heimdal K, Gjessing HK. Analysis of testicular cancer data using a frailty model with familial dependence. Stat Med. 2004; 23(4):617–32.CrossRefPubMed
16.
go back to reference Aalen OO, Borgan Ø, Gjessing HK. Survival and Event History Analysis: A Process Point of View. New York: Springer; 2008.CrossRef Aalen OO, Borgan Ø, Gjessing HK. Survival and Event History Analysis: A Process Point of View. New York: Springer; 2008.CrossRef
18.
19.
go back to reference Peto J. Genetic predisposition to cancer In: Cairns J, Lyon JL, Skolnick M, editors. Banbury Report 4: Cancer Incidence in defined populations. Cold Spring Harbor: Cold Spring Harbor Laboratory: 1980. p. 203–213. Peto J. Genetic predisposition to cancer In: Cairns J, Lyon JL, Skolnick M, editors. Banbury Report 4: Cancer Incidence in defined populations. Cold Spring Harbor: Cold Spring Harbor Laboratory: 1980. p. 203–213.
20.
go back to reference Valberg M, Grotmol T, Tretli S, Veierød MB, Moger TA, Aalen OO. A hierarchical frailty model for familial testicular germ-cell tumors. Am J Epidemiol. 2014; 179(4):499–506.CrossRefPubMed Valberg M, Grotmol T, Tretli S, Veierød MB, Moger TA, Aalen OO. A hierarchical frailty model for familial testicular germ-cell tumors. Am J Epidemiol. 2014; 179(4):499–506.CrossRefPubMed
21.
go back to reference Howlader N, Noone AM, Krapcho M, et al., (eds).SEER Cancer Statistics Review, 1975-2008, based on November 2010 SEER data submission. Bethesda: National Cancer Institute; 2011. Howlader N, Noone AM, Krapcho M, et al., (eds).SEER Cancer Statistics Review, 1975-2008, based on November 2010 SEER data submission. Bethesda: National Cancer Institute; 2011.
22.
go back to reference Frank C, Fallah M, Ji J, Sundquist J, Hemminki K. The population impact of familial cancer, a major cause of cancer. Int J Cancer. 2014; 134(8):1899–906.CrossRefPubMed Frank C, Fallah M, Ji J, Sundquist J, Hemminki K. The population impact of familial cancer, a major cause of cancer. Int J Cancer. 2014; 134(8):1899–906.CrossRefPubMed
23.
go back to reference Cancer Registry of Norway. Cancer in Norway 2015 - Cancer incidence, mortality, survival and prevalence in Norway. Oslo: Cancer Registry of Norway; 2016. Cancer Registry of Norway. Cancer in Norway 2015 - Cancer incidence, mortality, survival and prevalence in Norway. Oslo: Cancer Registry of Norway; 2016.
24.
go back to reference DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA: Cancer J Clin. 2016; 66(1):31–42. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA: Cancer J Clin. 2016; 66(1):31–42.
25.
go back to reference Collaborative Group on Hormonal Factors in Breast Cancer and others. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet. 2001; 358(9291):1389–99.CrossRef Collaborative Group on Hormonal Factors in Breast Cancer and others. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet. 2001; 358(9291):1389–99.CrossRef
26.
go back to reference Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016; 17(7):392–406.CrossRefPubMed Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016; 17(7):392–406.CrossRefPubMed
27.
go back to reference Narayan KV, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. Jama. 2003; 290(14):1884–90.CrossRefPubMed Narayan KV, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. Jama. 2003; 290(14):1884–90.CrossRefPubMed
28.
go back to reference Weires M, Tausch B, Haug P, Edwards C, Wetter T, Cannon-Albright L. Familiality of diabetes mellitus. Exp Clin Endocr Diab. 2007; 115(10):634–40.CrossRef Weires M, Tausch B, Haug P, Edwards C, Wetter T, Cannon-Albright L. Familiality of diabetes mellitus. Exp Clin Endocr Diab. 2007; 115(10):634–40.CrossRef
30.
go back to reference Hemminki K, Li X, Sundquist J, Sundquist K. Familial association between type 1 diabetes and other autoimmune and related diseases. Diabetologia. 2009; 52(9):1820–8.CrossRefPubMed Hemminki K, Li X, Sundquist J, Sundquist K. Familial association between type 1 diabetes and other autoimmune and related diseases. Diabetologia. 2009; 52(9):1820–8.CrossRefPubMed
31.
go back to reference Byrnes GB, Southey MC, Hopper JL. Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories. Breast Cancer Res. 2008; 10(3):208.CrossRefPubMedPubMedCentral Byrnes GB, Southey MC, Hopper JL. Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories. Breast Cancer Res. 2008; 10(3):208.CrossRefPubMedPubMedCentral
33.
go back to reference Stensrud MJ, Valberg M, Røysland K, Aalen OO. Exploring Selection Bias by Causal Frailty Models: The Magnitude Matters. Epidemiology. 2017; 28(3):379–86.CrossRefPubMed Stensrud MJ, Valberg M, Røysland K, Aalen OO. Exploring Selection Bias by Causal Frailty Models: The Magnitude Matters. Epidemiology. 2017; 28(3):379–86.CrossRefPubMed
34.
go back to reference Stensrud MJ, Valberg M, Aalen OO. Can Collider Bias Explain Paradoxical Associations?Epidemiology. 2017; 28(4):e39–40.CrossRefPubMed Stensrud MJ, Valberg M, Aalen OO. Can Collider Bias Explain Paradoxical Associations?Epidemiology. 2017; 28(4):e39–40.CrossRefPubMed
35.
go back to reference Stensrud MJ. Handling survival bias in proportional hazards models: A frailty approach. arXiv preprint arXiv:170106014. 2017. Stensrud MJ. Handling survival bias in proportional hazards models: A frailty approach. arXiv preprint arXiv:170106014. 2017.
36.
go back to reference Hemminki K, Fallah M, Hemminki A. Collection and use of family history in oncology clinics. J Clin Oncol. 2014; 32(29):3344–5.CrossRefPubMed Hemminki K, Fallah M, Hemminki A. Collection and use of family history in oncology clinics. J Clin Oncol. 2014; 32(29):3344–5.CrossRefPubMed
37.
go back to reference Win AK, Ouakrim DA, Jenkins MA. Risk profiling: familial colorectal cancer. In: Cancer Forum. vol. 38. Australia: Cancer Council Australia: 2014. p. 15–25. Win AK, Ouakrim DA, Jenkins MA. Risk profiling: familial colorectal cancer. In: Cancer Forum. vol. 38. Australia: Cancer Council Australia: 2014. p. 15–25.
38.
go back to reference Moger TA, Haugen M, Yip BH, Gjessing HK, Borgan Ø. A hierarchical frailty model applied to two-generation melanoma data. Lifetime Data Anal. 2011; 17(3):445–60.CrossRefPubMed Moger TA, Haugen M, Yip BH, Gjessing HK, Borgan Ø. A hierarchical frailty model applied to two-generation melanoma data. Lifetime Data Anal. 2011; 17(3):445–60.CrossRefPubMed
39.
go back to reference Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al.Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008; 40(12):1426–35.CrossRefPubMed Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al.Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008; 40(12):1426–35.CrossRefPubMed
40.
go back to reference Houlston R, Ford D. Genetics of coeliac disease. QJM-Mon J Assoc Phys. 1996; 89(10):737–44. Houlston R, Ford D. Genetics of coeliac disease. QJM-Mon J Assoc Phys. 1996; 89(10):737–44.
41.
go back to reference Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, et al.A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007; 39(3):352–8.CrossRefPubMed Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, et al.A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007; 39(3):352–8.CrossRefPubMed
42.
43.
go back to reference Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011; 12(11):781–92.CrossRefPubMed Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011; 12(11):781–92.CrossRefPubMed
44.
go back to reference Hemminki K. Familial risk and familial survival in prostate cancer. World J Urol. 2012; 30(2):143–8.CrossRefPubMed Hemminki K. Familial risk and familial survival in prostate cancer. World J Urol. 2012; 30(2):143–8.CrossRefPubMed
45.
46.
go back to reference Cui J, Hopper JL. Why are the majority of hereditary cases of early-onset breast cancer sporadic? A simulation study. Cancer Epidemiol Biomarkers Prev. 2000; 9(8):805–12.PubMed Cui J, Hopper JL. Why are the majority of hereditary cases of early-onset breast cancer sporadic? A simulation study. Cancer Epidemiol Biomarkers Prev. 2000; 9(8):805–12.PubMed
47.
go back to reference Cremers RG, Galesloot TE, Aben KK, van Oort IM, Vasen HF, Vermeulen SH, et al.Known susceptibility SNPs for sporadic prostate cancer show a similar association with “hereditary” prostate cancer. Prostate. 2015; 75(5):474–83.CrossRefPubMed Cremers RG, Galesloot TE, Aben KK, van Oort IM, Vasen HF, Vermeulen SH, et al.Known susceptibility SNPs for sporadic prostate cancer show a similar association with “hereditary” prostate cancer. Prostate. 2015; 75(5):474–83.CrossRefPubMed
48.
go back to reference Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al.Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016; 315(1):68–76.CrossRefPubMedPubMedCentral Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al.Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016; 315(1):68–76.CrossRefPubMedPubMedCentral
50.
go back to reference Risch N. The genetic epidemiology of cancer: Interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol Biomarkers Prev. 2001; 10(7):733–41.PubMed Risch N. The genetic epidemiology of cancer: Interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol Biomarkers Prev. 2001; 10(7):733–41.PubMed
51.
go back to reference Brandt A, Bermejo JL, Sundquist J, Hemminki K. Age-specific risk of incident prostate cancer and risk of death from prostate cancer defined by the number of affected family members. Eur Urol. 2010; 58(2):275–80.CrossRefPubMed Brandt A, Bermejo JL, Sundquist J, Hemminki K. Age-specific risk of incident prostate cancer and risk of death from prostate cancer defined by the number of affected family members. Eur Urol. 2010; 58(2):275–80.CrossRefPubMed
52.
go back to reference Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol. 2001; 96(10):2992–3003.CrossRefPubMed Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol. 2001; 96(10):2992–3003.CrossRefPubMed
53.
go back to reference Fallah M, Pukkala E, Sundquist K, Tretli S, Olsen JH, Tryggvadottir L, et al. Familial melanoma by histology and age: joint data from five Nordic countries. Eur J Cancer. 2014; 50(6):1176–83.CrossRefPubMed Fallah M, Pukkala E, Sundquist K, Tretli S, Olsen JH, Tryggvadottir L, et al. Familial melanoma by histology and age: joint data from five Nordic countries. Eur J Cancer. 2014; 50(6):1176–83.CrossRefPubMed
55.
go back to reference Fallah M, Pukkala E, Tryggvadottir L, Olsen JH, Tretli S, Sundquist K, et al. Risk of thyroid cancer in first-degree relatives of patients with non-medullary thyroid cancer by histology type and age at diagnosis: a joint study from five Nordic countries. J Med Genet. 2013. https://doi.org/10.1136/jmedgenet-2012-101412. Fallah M, Pukkala E, Tryggvadottir L, Olsen JH, Tretli S, Sundquist K, et al. Risk of thyroid cancer in first-degree relatives of patients with non-medullary thyroid cancer by histology type and age at diagnosis: a joint study from five Nordic countries. J Med Genet. 2013. https://​doi.​org/​10.​1136/​jmedgenet-2012-101412.
Metadata
Title
The surprising implications of familial association in disease risk
Authors
Morten Valberg
Mats Julius Stensrud
Odd O. Aalen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2018
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-5033-5

Other articles of this Issue 1/2018

BMC Public Health 1/2018 Go to the issue