Skip to main content
Top
Published in: BMC Public Health 1/2017

Open Access 01-12-2017 | Research article

Relation between metabolic syndrome and body compositions among Chinese adolescents and adults from a large-scale population survey

Authors: Tao Xu, Junting Liu, Junxiu Liu, Guangjin Zhu, Shaomei Han

Published in: BMC Public Health | Issue 1/2017

Login to get access

Abstract

Background

Few nationally representative surveys regarding body composition and metabolic syndrome (MetS) have been done in a large-scale representative Chinese population to explore the prediction of body composition indicators for MetS. The objective of this study was to examine the relation of body composition and MetS and to determine the optimal cut-off values of body composition indicators that predict MetS in a large representative Chinese sample based on multiple provinces and ethnicities, covering a broad age range from 10 to 80 years old.

Methods

The subjects came from a large-scale population survey on Chinese physiological constants and health conditions conducted in six provinces. 32,036 subjects completed all blood biochemical testing and body composition measure. Subjects meeting at least 3 of the following 5 criteria qualify as having MetS: elevated blood pressure, lower high density lipoprotein cholesterol level, higher triglyceride level, higher fasting glucose level and abdominal obesity.

Results

The total prevalence rate of MetS for males (9.29%) was lower than for females (11.58%). The prevalence rates were 12.03% for male adults and 15.57% for female adults respectively. The risk of MetS increased 44.6% (OR = 1.446, 95%CI: 1.414–1.521) for males and 53.4% (OR = 1.534, 95%CI: 1.472–1.598) for females with each 5% increase of percentage of body fat. The risk of MetS increased two-fold (OR = 2.020, 95%CI: 1.920–2.125 for males; OR = 2.047, 95%CI: 1.954–2.144 for females respectively) with each 5% increase of waist-hip ratio. The risk of MetS increased three-fold (OR = 2.915, 95%CI: 2.742–3.099 for males; OR = 2.950, 95%CI: 2.784–3.127 for females respectively) with each 5% increase of Waist-to-Height Ratio (WHtR). Areas under the receiver operating curve (AUC) of most body composition indicators were larger than 0.70 and the sensitivities and the specificities of most cut-off values were larger than 0.65. AUCs of WHR and WHtR were the largest. The optimal cut-off values of WHtR were 0.51 for males and 0.53 for females.

Conclusion

MetS has become a serious public health challenge in China. Body composition variables were closely related to MetS and they were reliable indicators in the screening of the presence of MetS.
Literature
1.
go back to reference Yao C, Wu Z, Wu Y. The changing pattern of cardiovascular diseases in China. World Health Stat Q. 1993;46:113–8.PubMed Yao C, Wu Z, Wu Y. The changing pattern of cardiovascular diseases in China. World Health Stat Q. 1993;46:113–8.PubMed
2.
go back to reference Popkin BM, Horton S, Kim S, Mahal A, Shuigao J. Trends in diet, nutritional status, and diet-related noncommunicable diseases in China and India: the economic costs of the nutrition transition. Nutr Rev. 2001;59:379–90.CrossRefPubMed Popkin BM, Horton S, Kim S, Mahal A, Shuigao J. Trends in diet, nutritional status, and diet-related noncommunicable diseases in China and India: the economic costs of the nutrition transition. Nutr Rev. 2001;59:379–90.CrossRefPubMed
3.
go back to reference Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104:2746–53.CrossRefPubMed Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104:2746–53.CrossRefPubMed
4.
go back to reference Dou X, Zhang H, Sun K, et al. Metabolic syndrome strongly linked to stroke in Chinese. Natl Med J China. 2004;84:539–42. Dou X, Zhang H, Sun K, et al. Metabolic syndrome strongly linked to stroke in Chinese. Natl Med J China. 2004;84:539–42.
5.
go back to reference Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–16.CrossRefPubMed Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–16.CrossRefPubMed
6.
go back to reference Laaksonen DE, Lakka HM, Niskanen LK, Kaplan GA, Salonen JT, Lakka TA. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol. 2002;156:1070–7.CrossRefPubMed Laaksonen DE, Lakka HM, Niskanen LK, Kaplan GA, Salonen JT, Lakka TA. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol. 2002;156:1070–7.CrossRefPubMed
7.
go back to reference Liese AD, Mayer-Davis EJ, Haffner SM. Development of the multiple metabolic syndrome: an epidemiologic perspective. Epidemiol Rev. 1998;20:157–72.CrossRefPubMed Liese AD, Mayer-Davis EJ, Haffner SM. Development of the multiple metabolic syndrome: an epidemiologic perspective. Epidemiol Rev. 1998;20:157–72.CrossRefPubMed
8.
go back to reference Feng Y, Hong X, Li Z, Zhang W, Jin D, Liu X, et al. Prevalence of metabolic syndrome and its relation to body composition in a Chinese rural population. Obesity (Silver Spring). 2006;14:2089–98.CrossRef Feng Y, Hong X, Li Z, Zhang W, Jin D, Liu X, et al. Prevalence of metabolic syndrome and its relation to body composition in a Chinese rural population. Obesity (Silver Spring). 2006;14:2089–98.CrossRef
9.
go back to reference Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF, et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005;365:1398–405.CrossRefPubMed Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF, et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005;365:1398–405.CrossRefPubMed
10.
go back to reference Szymańska E, Bouwman J, Strassburg K, Vervoort J, Kangas AJ, Soininen P, et al. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics. OMICS. 2002;16:652–67.CrossRef Szymańska E, Bouwman J, Strassburg K, Vervoort J, Kangas AJ, Soininen P, et al. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics. OMICS. 2002;16:652–67.CrossRef
11.
go back to reference Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA study. JACC Cardiovasc Imaging. 2014;7:1221–35.CrossRefPubMedPubMedCentral Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA study. JACC Cardiovasc Imaging. 2014;7:1221–35.CrossRefPubMedPubMedCentral
12.
go back to reference Djibo DA, Araneta MR, Kritz-Silverstein D, Barrett-Connor E, Wooten W. Body adiposity index as a risk factor for the metabolic syndrome in postmenopausal Caucasian, African American, and Filipina women. Diabetes Metab Syndr. 2015;9:108–13.CrossRefPubMed Djibo DA, Araneta MR, Kritz-Silverstein D, Barrett-Connor E, Wooten W. Body adiposity index as a risk factor for the metabolic syndrome in postmenopausal Caucasian, African American, and Filipina women. Diabetes Metab Syndr. 2015;9:108–13.CrossRefPubMed
13.
go back to reference Zhu S, Wang Z, Shen W, Heymsfield SB, Heshka S. Percentage body fat ranges associated with metabolic syndrome risk: results based on the third National Health and nutrition examination survey (1988-1994). Am J Clin Nutr. 2003;78:228–35.PubMed Zhu S, Wang Z, Shen W, Heymsfield SB, Heshka S. Percentage body fat ranges associated with metabolic syndrome risk: results based on the third National Health and nutrition examination survey (1988-1994). Am J Clin Nutr. 2003;78:228–35.PubMed
14.
go back to reference Liu P, Ma F, Lou H, Liu Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health. 2013;13:629.CrossRefPubMedPubMedCentral Liu P, Ma F, Lou H, Liu Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health. 2013;13:629.CrossRefPubMedPubMedCentral
15.
go back to reference Grundy SM. Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Arterioscler Thromb Vasc Biol. 2005;25:2243–4.CrossRefPubMed Grundy SM. Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Arterioscler Thromb Vasc Biol. 2005;25:2243–4.CrossRefPubMed
16.
go back to reference Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and nutrition examination survey, 1988-1994. Arch Pediatr Adolesc Med. 2003;157:821–7.CrossRefPubMed Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and nutrition examination survey, 1988-1994. Arch Pediatr Adolesc Med. 2003;157:821–7.CrossRefPubMed
17.
go back to reference Ma GS, Ji CY, Ma J, Mi J, Yt SR, Xiong F, et al. Waist circumference reference values for screening cardiovascular risk factors in Chinese children and adolescents. Biomed Environ Sci. 2010;23:21–31.CrossRefPubMed Ma GS, Ji CY, Ma J, Mi J, Yt SR, Xiong F, et al. Waist circumference reference values for screening cardiovascular risk factors in Chinese children and adolescents. Biomed Environ Sci. 2010;23:21–31.CrossRefPubMed
18.
go back to reference Mi J, Wang TY, Meng LH, Zhu GJ, Han SM, Zhong Y, et al. Development of blood pressure reference standards for Chinese children and adolescents. Chin J Evid Based Pediatr. 2010;5:4–14. Mi J, Wang TY, Meng LH, Zhu GJ, Han SM, Zhong Y, et al. Development of blood pressure reference standards for Chinese children and adolescents. Chin J Evid Based Pediatr. 2010;5:4–14.
19.
go back to reference Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9.CrossRefPubMed Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9.CrossRefPubMed
20.
go back to reference Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.CrossRefPubMed Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.CrossRefPubMed
21.
go back to reference Li CI, Kardia SL, Liu CS, Lin WY, Lin CH, Lee YD, et al. Metabolic syndrome is associated with change in subclinical arterial stiffness: a community-based Taichung community health study. BMC Public Health. 2011;11:808.CrossRefPubMedPubMedCentral Li CI, Kardia SL, Liu CS, Lin WY, Lin CH, Lee YD, et al. Metabolic syndrome is associated with change in subclinical arterial stiffness: a community-based Taichung community health study. BMC Public Health. 2011;11:808.CrossRefPubMedPubMedCentral
22.
go back to reference Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes. 1992;41:715–22.CrossRefPubMed Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes. 1992;41:715–22.CrossRefPubMed
23.
go back to reference WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–xii. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–xii.
24.
go back to reference Zhou BF. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases—report for meta-analysis of prospective studies open optimal cut-off points of body mass index in Chinese adults. Biomed Environ Sci. 2002;15:245–52.PubMed Zhou BF. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases—report for meta-analysis of prospective studies open optimal cut-off points of body mass index in Chinese adults. Biomed Environ Sci. 2002;15:245–52.PubMed
25.
go back to reference Liu Y, Tong G, Tong W, Lu L, Qin X. Can body mass index, waist circumference, waist-hip ratio and waist-height ratio predict the presence of multiple metabolic risk factorsin Chinese subjects? BMC Public Health. 2011;11:35.CrossRefPubMedPubMedCentral Liu Y, Tong G, Tong W, Lu L, Qin X. Can body mass index, waist circumference, waist-hip ratio and waist-height ratio predict the presence of multiple metabolic risk factorsin Chinese subjects? BMC Public Health. 2011;11:35.CrossRefPubMedPubMedCentral
26.
go back to reference Kim JY, Oh S, Chang MR, Cho YG, Park KH, Paek YJ, et al. Comparability and utility of body composition measurement vs. anthropometric measurement for assessing obesity related health risks in Korean men. Int J Clin Pract. 2013;67:73–80.CrossRefPubMed Kim JY, Oh S, Chang MR, Cho YG, Park KH, Paek YJ, et al. Comparability and utility of body composition measurement vs. anthropometric measurement for assessing obesity related health risks in Korean men. Int J Clin Pract. 2013;67:73–80.CrossRefPubMed
27.
go back to reference Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Comorbidity Diagn. 2012;13:275–86. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Comorbidity Diagn. 2012;13:275–86.
29.
go back to reference Wang X, Wu H, Long Z, Sun Q, Liu J, Liu Y, et al. Differential effect of se on insulin resistance: regulation of adipogenesis and lipolysis. Mol Cell Biochem. 2016;415:89–102.CrossRefPubMed Wang X, Wu H, Long Z, Sun Q, Liu J, Liu Y, et al. Differential effect of se on insulin resistance: regulation of adipogenesis and lipolysis. Mol Cell Biochem. 2016;415:89–102.CrossRefPubMed
30.
go back to reference Laurens C, Moro C. Intramyocellular fat storage in metabolic diseases. Horm Mol Biol Clin Invest. 2016;26:43–52. Laurens C, Moro C. Intramyocellular fat storage in metabolic diseases. Horm Mol Biol Clin Invest. 2016;26:43–52.
Metadata
Title
Relation between metabolic syndrome and body compositions among Chinese adolescents and adults from a large-scale population survey
Authors
Tao Xu
Junting Liu
Junxiu Liu
Guangjin Zhu
Shaomei Han
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2017
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-017-4238-3

Other articles of this Issue 1/2017

BMC Public Health 1/2017 Go to the issue