Skip to main content
Top
Published in: BMC Public Health 1/2016

Open Access 01-12-2016 | Research article

Spatial physical activity patterns among primary school children living in neighbourhoods of varying socioeconomic status: a cross-sectional study using accelerometry and Global Positioning System

Authors: Rahel Bürgi, Laura Tomatis, Kurt Murer, Eling D. de Bruin

Published in: BMC Public Health | Issue 1/2016

Login to get access

Abstract

Background

Neighbourhood socioeconomic status (SES) has been shown to be related to health status and overweight independent of individual SES. However, results about the association between neighbourhood SES and physical activity among children are ambiguous. Particularly, it is unknown how socioeconomic factors influence the spatial context of children’s moderate-vigorous physical activity (MVPA) and sedentary behaviour (SB). This study aimed to investigate by means of Global Positioning System (GPS) and accelerometry whether locations where children engage in MVPA and SB differ by neighbourhood SES.

Methods

Participants included 83 children aged 7–9 from nine public schools located in a low- and high-SES area in Zurich, Switzerland. Children wore an accelerometer and GPS sensor for seven consecutive days. Time-matched accelerometer and GPS data was mapped with a geographic information system and each data point assigned to one of eight activity settings. The amount and proportion of MVPA and SB were calculated for every setting. To investigate differences between the two SES groups, multilevel analyses accounting for the hierarchical structure of the data were conducted.

Results

Both SES groups achieved most minutes in MVPA at own school, on streets and at home and recorded the highest proportions of MVPA in recreational facilities, streets and other schools. The highest amounts and proportions of SB were found at home and own school. High-SES children accumulated significantly more minutes in MVPA and SB in parks, sport facilities, other schools and streets, while the low-SES group spent more time in both activities in other places. When taking the total time spent in a setting into account and using the proportion of MVPA or SB, the only differences between the two groups were found at other schools and outside, where the high-SES children showed a significantly higher activity level (p-values <0.001).

Conclusions

Several differences in the spatial activity pattern between children from low- and high-SES neighbourhoods were found, independent of their individual SES. The findings seem to highlight the importance of providing safe streets and access to appropriate types of recreational facilities to reach recommended PA levels. Further policies to reduce SB within home and school environment are needed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral
2.
go back to reference Andersen LB, Riddoch C, Kriemler S, Hills A. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45:871–6.CrossRefPubMed Andersen LB, Riddoch C, Kriemler S, Hills A. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45:871–6.CrossRefPubMed
3.
go back to reference Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45:886–95.CrossRefPubMed Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45:886–95.CrossRefPubMed
4.
go back to reference Kjonniksen L, Torsheim T, Wold B. Tracking of leisure-time physical activity during adolescence and young adulthood: a 10-year longitudinal study. Int J Behav Nutr Phys Act. 2008;5:69.CrossRefPubMedPubMedCentral Kjonniksen L, Torsheim T, Wold B. Tracking of leisure-time physical activity during adolescence and young adulthood: a 10-year longitudinal study. Int J Behav Nutr Phys Act. 2008;5:69.CrossRefPubMedPubMedCentral
5.
go back to reference Hallal PC, Victora CG, Azevedo MR, Wells JC. Adolescent physical activity and health: a systematic review. Sports Med. 2006;36:1019–30.CrossRefPubMed Hallal PC, Victora CG, Azevedo MR, Wells JC. Adolescent physical activity and health: a systematic review. Sports Med. 2006;36:1019–30.CrossRefPubMed
6.
go back to reference WHO. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011. WHO. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011.
7.
go back to reference Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9:34.CrossRefPubMedPubMedCentral Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9:34.CrossRefPubMedPubMedCentral
8.
go back to reference Currie C, Zanotti C, Morgan A, Currie D, de Looze M, Roberts C, et al. Social determinants of health and well-being among young people. Health Behaviour in School-aged Children (HBSC) study: international report from the 2009/2010 survey. Copenhagen: WHO Regional Office for Europe; 2012. Currie C, Zanotti C, Morgan A, Currie D, de Looze M, Roberts C, et al. Social determinants of health and well-being among young people. Health Behaviour in School-aged Children (HBSC) study: international report from the 2009/2010 survey. Copenhagen: WHO Regional Office for Europe; 2012.
9.
go back to reference Cavill N, Kahlmeier S, Racioppi F, editors. Physical Activity and Health in Europe: Evidence for Action. Copenhagen: WHO; 2006. Cavill N, Kahlmeier S, Racioppi F, editors. Physical Activity and Health in Europe: Evidence for Action. Copenhagen: WHO; 2006.
10.
go back to reference Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725–40.CrossRefPubMed Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725–40.CrossRefPubMed
11.
go back to reference Salmon J, Dunstan D, Owen N. Should we be concerned about children spending extended periods of time in sedentary pursuits even among the highly active? Int J Pediatr Obes. 2008;3:66–8.CrossRefPubMed Salmon J, Dunstan D, Owen N. Should we be concerned about children spending extended periods of time in sedentary pursuits even among the highly active? Int J Pediatr Obes. 2008;3:66–8.CrossRefPubMed
12.
go back to reference Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral
13.
go back to reference Salmon J, Tremblay MS, Marshall SJ, Hume C. Health risks, correlates, and interventions to reduce sedentary behavior in young people. Am J Prev Med. 2011;41:197–206.CrossRefPubMed Salmon J, Tremblay MS, Marshall SJ, Hume C. Health risks, correlates, and interventions to reduce sedentary behavior in young people. Am J Prev Med. 2011;41:197–206.CrossRefPubMed
14.
go back to reference Sallis JF, Owen N, Fotheringham MJ. Behavioral epidemiology: A systematic framework to classify phases of research on health promotion and disease prevention. Ann Behav Med. 2000;22:294–8.CrossRefPubMed Sallis JF, Owen N, Fotheringham MJ. Behavioral epidemiology: A systematic framework to classify phases of research on health promotion and disease prevention. Ann Behav Med. 2000;22:294–8.CrossRefPubMed
15.
go back to reference Biddle SJH, Atkin AJ, Cavill N, Foster C. Correlates of physical activity in youth: a review of quantitative systematic reviews. Int Rev Sport Exer Psychol. 2011;4:25–49.CrossRef Biddle SJH, Atkin AJ, Cavill N, Foster C. Correlates of physical activity in youth: a review of quantitative systematic reviews. Int Rev Sport Exer Psychol. 2011;4:25–49.CrossRef
16.
go back to reference Cerin E, Leslie E. How socio-economic status contributes to participation in leisure-time physical activity. Soc Sci Med. 2008;66(12):2596–609.CrossRefPubMed Cerin E, Leslie E. How socio-economic status contributes to participation in leisure-time physical activity. Soc Sci Med. 2008;66(12):2596–609.CrossRefPubMed
17.
go back to reference Chen E, Matthews KA, Boyce WT. Socioeconomic differences in children’s health: How and why do these relationships change with age? Psychol Bull. 2002;128:295–329.CrossRefPubMed Chen E, Matthews KA, Boyce WT. Socioeconomic differences in children’s health: How and why do these relationships change with age? Psychol Bull. 2002;128:295–329.CrossRefPubMed
18.
go back to reference Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: A systematic review of cross-sectional studies 1990-2005. Obesity. 2008;16:275–84.CrossRefPubMed Shrewsbury V, Wardle J. Socioeconomic status and adiposity in childhood: A systematic review of cross-sectional studies 1990-2005. Obesity. 2008;16:275–84.CrossRefPubMed
19.
go back to reference Brockman R, Jago R, Fox KR, Thompson JL, Cartwright K, Page AS. “Get off the sofa and go and play”: Family and socioeconomic influences on the physical activity of 10-11 year old children. BMC Public Health. 2009;9:253.CrossRefPubMedPubMedCentral Brockman R, Jago R, Fox KR, Thompson JL, Cartwright K, Page AS. “Get off the sofa and go and play”: Family and socioeconomic influences on the physical activity of 10-11 year old children. BMC Public Health. 2009;9:253.CrossRefPubMedPubMedCentral
20.
go back to reference Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9:88.CrossRefPubMedPubMedCentral Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9:88.CrossRefPubMedPubMedCentral
21.
go back to reference Pulsford RM, Griew P, Page AS, Cooper AR, Hillsdon MM. Socioeconomic position and childhood sedentary time: evidence from the PEACH project. Int J Behav Nutr Phys Act. 2013;10:105.CrossRefPubMedPubMedCentral Pulsford RM, Griew P, Page AS, Cooper AR, Hillsdon MM. Socioeconomic position and childhood sedentary time: evidence from the PEACH project. Int J Behav Nutr Phys Act. 2013;10:105.CrossRefPubMedPubMedCentral
22.
go back to reference Drenowatz C, Eisenmann JC, Pfeiffer KA, Welk G, Heelan K, Gentile D, et al. Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children. BMC Public Health. 2010;10:214.CrossRefPubMedPubMedCentral Drenowatz C, Eisenmann JC, Pfeiffer KA, Welk G, Heelan K, Gentile D, et al. Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children. BMC Public Health. 2010;10:214.CrossRefPubMedPubMedCentral
23.
go back to reference Gustafson SL, Rhodes RE. Parental correlates of physical activity in children and early adolescents. Sports Med. 2006;36:79–97.CrossRefPubMed Gustafson SL, Rhodes RE. Parental correlates of physical activity in children and early adolescents. Sports Med. 2006;36:79–97.CrossRefPubMed
24.
go back to reference Ferreira I, van der Horst K, Wendel-Vos W, Kremers S, van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth - a review and update. Obes Rev. 2007;8:129–54.CrossRefPubMed Ferreira I, van der Horst K, Wendel-Vos W, Kremers S, van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth - a review and update. Obes Rev. 2007;8:129–54.CrossRefPubMed
25.
go back to reference Beenackers MA, Kamphuis CBM, Giskes K, Brug J, Kunst AE, Burdorf A, et al. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: A systematic review. Int J Behav Nutr Phys Act. 2012;9:116.CrossRefPubMedPubMedCentral Beenackers MA, Kamphuis CBM, Giskes K, Brug J, Kunst AE, Burdorf A, et al. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: A systematic review. Int J Behav Nutr Phys Act. 2012;9:116.CrossRefPubMedPubMedCentral
26.
go back to reference Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380:258–71.CrossRefPubMed Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380:258–71.CrossRefPubMed
27.
go back to reference McNeill LH, Kreuter MW, Subramanian SV. Social environment and physical activity: a review of concepts and evidence. Soc Sci Med. 2006;63(4):1011–22.CrossRefPubMed McNeill LH, Kreuter MW, Subramanian SV. Social environment and physical activity: a review of concepts and evidence. Soc Sci Med. 2006;63(4):1011–22.CrossRefPubMed
28.
go back to reference Kavanagh AM, Goller JL, King T, Jolley D, Crawford D, Turrell G. Urban area disadvantage and physical activity: a multilevel study in Melbourne, Australia. J Epidemiol Community Health. 2005;59(11):934–40.CrossRefPubMedPubMedCentral Kavanagh AM, Goller JL, King T, Jolley D, Crawford D, Turrell G. Urban area disadvantage and physical activity: a multilevel study in Melbourne, Australia. J Epidemiol Community Health. 2005;59(11):934–40.CrossRefPubMedPubMedCentral
29.
go back to reference Veitch J, Timperio A, Crawford D, Abbott G, Giles-Corti B, Salmon J. Is the neighbourhood environment associated with sedentary behaviour outside of school hours among children? Ann Behav Med. 2011;41(3):333–41.CrossRefPubMed Veitch J, Timperio A, Crawford D, Abbott G, Giles-Corti B, Salmon J. Is the neighbourhood environment associated with sedentary behaviour outside of school hours among children? Ann Behav Med. 2011;41(3):333–41.CrossRefPubMed
30.
go back to reference Katapally TR, Muhajarine N. Capturing the interrelationship between objectively measured physical activity and sedentary behaviour in children in the context of diverse environmental exposures. Int J Environ Res Public Health. 2015;12(9):10995–1011.CrossRefPubMedPubMedCentral Katapally TR, Muhajarine N. Capturing the interrelationship between objectively measured physical activity and sedentary behaviour in children in the context of diverse environmental exposures. Int J Environ Res Public Health. 2015;12(9):10995–1011.CrossRefPubMedPubMedCentral
31.
go back to reference Brodersen NH, Steptoe A, Williamson S, Wardle J. Sociodemographic, developmental, environmental, and psychological correlates of physical activity and sedentary behavior at age 11 to 12. Ann Behav Med. 2005;29(1):2–11.CrossRefPubMed Brodersen NH, Steptoe A, Williamson S, Wardle J. Sociodemographic, developmental, environmental, and psychological correlates of physical activity and sedentary behavior at age 11 to 12. Ann Behav Med. 2005;29(1):2–11.CrossRefPubMed
32.
go back to reference Nelson MC, Gordon-Larsen P, Song Y, Popkin BM. Built and social environments associations with adolescent overweight and activity. Am J Prev Med. 2006;31(2):109–17.CrossRefPubMed Nelson MC, Gordon-Larsen P, Song Y, Popkin BM. Built and social environments associations with adolescent overweight and activity. Am J Prev Med. 2006;31(2):109–17.CrossRefPubMed
33.
go back to reference Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Self-reported TV and computer time do not represent accelerometer-derived total sedentary time in 10 to 12-year-olds. Eur J Public Health. 2013;23(1):30–2.CrossRefPubMed Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Self-reported TV and computer time do not represent accelerometer-derived total sedentary time in 10 to 12-year-olds. Eur J Public Health. 2013;23(1):30–2.CrossRefPubMed
34.
go back to reference Schoeppe S, Duncan MJ, Badland H, Oliver M, Curtis C. Associations of children’s independent mobility and active travel with physical activity, sedentary behaviour and weight status: a systematic review. J Sci Med Sport. 2013;16(4):312–9.CrossRefPubMed Schoeppe S, Duncan MJ, Badland H, Oliver M, Curtis C. Associations of children’s independent mobility and active travel with physical activity, sedentary behaviour and weight status: a systematic review. J Sci Med Sport. 2013;16(4):312–9.CrossRefPubMed
35.
go back to reference Jankowska MM, Schipperijn J, Kerr J. A framework for using GPS data in physical activity and sedentary behavior studies. Exerc Sport Sci Rev. 2015;43:48–56.CrossRefPubMedPubMedCentral Jankowska MM, Schipperijn J, Kerr J. A framework for using GPS data in physical activity and sedentary behavior studies. Exerc Sport Sci Rev. 2015;43:48–56.CrossRefPubMedPubMedCentral
36.
go back to reference Oreskovic NM, Blossom J, Field AE, Chiang SR, Winickoff JP, Kleinman RE. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat Health. 2012;6:263–72.CrossRefPubMed Oreskovic NM, Blossom J, Field AE, Chiang SR, Winickoff JP, Kleinman RE. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat Health. 2012;6:263–72.CrossRefPubMed
37.
go back to reference Rodriguez DA, Brown AL, Troped PJ. Portable global positioning units to complement accelerometry-based physical activity monitors. Med Sci Sport Exer. 2005;37 Suppl 11:572–81.CrossRef Rodriguez DA, Brown AL, Troped PJ. Portable global positioning units to complement accelerometry-based physical activity monitors. Med Sci Sport Exer. 2005;37 Suppl 11:572–81.CrossRef
38.
go back to reference Kerr J, Duncan S, Schipperjin J. Using global positioning systems in health research: a practical approach to data collection and processing. Am J Prev Med. 2011;41:532–40.CrossRefPubMed Kerr J, Duncan S, Schipperjin J. Using global positioning systems in health research: a practical approach to data collection and processing. Am J Prev Med. 2011;41:532–40.CrossRefPubMed
40.
go back to reference Nilsson A, Ekelund U, Yngve A, Sjöström M. Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Ped Exer Sci. 2002;14:87–96. Nilsson A, Ekelund U, Yngve A, Sjöström M. Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Ped Exer Sci. 2002;14:87–96.
41.
go back to reference Schipperijn J, Kerr J, Duncan S, Madsen T, Klinker CD, Troelsen J. Dynamic accuracy of GPS receivers for use in health research: a novel method to assess GPS accuracy in real-world settings. Front Public Health. 2014;2:21.CrossRefPubMedPubMedCentral Schipperijn J, Kerr J, Duncan S, Madsen T, Klinker CD, Troelsen J. Dynamic accuracy of GPS receivers for use in health research: a novel method to assess GPS accuracy in real-world settings. Front Public Health. 2014;2:21.CrossRefPubMedPubMedCentral
42.
go back to reference Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81.CrossRefPubMed Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81.CrossRefPubMed
44.
go back to reference Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sport Exer. 2008;40:181–8.CrossRef Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sport Exer. 2008;40:181–8.CrossRef
45.
go back to reference Almanza E, Jerrett M, Dunton G, Seto E, Pentz MA. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place. 2012;18:46–54.CrossRefPubMedPubMedCentral Almanza E, Jerrett M, Dunton G, Seto E, Pentz MA. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place. 2012;18:46–54.CrossRefPubMedPubMedCentral
46.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.CrossRefPubMed Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.CrossRefPubMed
47.
go back to reference Trost S, Loprinzi P, Moore R, Pfeiffer K. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sport Exer. 2011;43:1360–8.CrossRef Trost S, Loprinzi P, Moore R, Pfeiffer K. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sport Exer. 2011;43:1360–8.CrossRef
48.
go back to reference Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL. Spatial classification of youth physical activity patterns. Am J Prev Med. 2012;42:e87–96.CrossRefPubMed Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL. Spatial classification of youth physical activity patterns. Am J Prev Med. 2012;42:e87–96.CrossRefPubMed
49.
go back to reference Klinker CD, Schipperijn J, Christian H, Kerr J, Ersboll AK, Troelsen J. Using accelerometers and global positioning system devices to assess gender and age differences in children’s school, transport, leisure and home based physical activity. Int J Behav Nutr Phys Act. 2014;11:8.CrossRefPubMedPubMedCentral Klinker CD, Schipperijn J, Christian H, Kerr J, Ersboll AK, Troelsen J. Using accelerometers and global positioning system devices to assess gender and age differences in children’s school, transport, leisure and home based physical activity. Int J Behav Nutr Phys Act. 2014;11:8.CrossRefPubMedPubMedCentral
50.
go back to reference Dessing D, Pierik FH, Sterkenburg RP, van Dommelen P, Maas J, de Vries SI. Schoolyard physical activity of 6–11 year old children assessed by GPS and accelerometry. Int J Behav Nutr Phys Act. 2013;10:97.CrossRefPubMedPubMedCentral Dessing D, Pierik FH, Sterkenburg RP, van Dommelen P, Maas J, de Vries SI. Schoolyard physical activity of 6–11 year old children assessed by GPS and accelerometry. Int J Behav Nutr Phys Act. 2013;10:97.CrossRefPubMedPubMedCentral
51.
go back to reference Cerin E. Statistical approaches to testing the relationships of the built environment with resident-level physical activity behavior and health outcomes in cross-sectional studies with cluster sampling. J Plann Lit. 2011;26:151–67.CrossRef Cerin E. Statistical approaches to testing the relationships of the built environment with resident-level physical activity behavior and health outcomes in cross-sectional studies with cluster sampling. J Plann Lit. 2011;26:151–67.CrossRef
52.
go back to reference Lamprecht M, Fischer A, Wiegand D, Stamm HP. Sport Schweiz 2014: Kinder- und Jugendbericht. Magglingen: Bundesamt für Sport BASPO; 2015. Lamprecht M, Fischer A, Wiegand D, Stamm HP. Sport Schweiz 2014: Kinder- und Jugendbericht. Magglingen: Bundesamt für Sport BASPO; 2015.
53.
go back to reference Maddison R, Jiang Y, Vander Hoorn S, Exeter D, Mhurchu CN, Dorey E. Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Pediatr Exerc Sci. 2010;22:392–407.PubMed Maddison R, Jiang Y, Vander Hoorn S, Exeter D, Mhurchu CN, Dorey E. Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Pediatr Exerc Sci. 2010;22:392–407.PubMed
54.
go back to reference Duncan JS, Hopkins WG, Schofield G, Duncan EK. Effects of weather on pedometer-determined physical activity in children. Med Sci Sports Exerc. 2008;40(8):1432–8.CrossRefPubMed Duncan JS, Hopkins WG, Schofield G, Duncan EK. Effects of weather on pedometer-determined physical activity in children. Med Sci Sports Exerc. 2008;40(8):1432–8.CrossRefPubMed
55.
go back to reference McCrorie PRW, Fenton C, Ellaway A. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people–a review. Int J Behav Nutr Phys Act. 2014;11:93.CrossRefPubMedPubMedCentral McCrorie PRW, Fenton C, Ellaway A. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people–a review. Int J Behav Nutr Phys Act. 2014;11:93.CrossRefPubMedPubMedCentral
56.
go back to reference Oreskovic NM, Perrin JM, Robinson AI, Locascio JJ, Blossom J, Chen ML, et al. Adolescents’ use of the built environment for physical activity. BMC Public Health. 2015;15:251.CrossRefPubMedPubMedCentral Oreskovic NM, Perrin JM, Robinson AI, Locascio JJ, Blossom J, Chen ML, et al. Adolescents’ use of the built environment for physical activity. BMC Public Health. 2015;15:251.CrossRefPubMedPubMedCentral
57.
go back to reference Jones AP, Coombes EG, Griffin SJ, van Sluijs EMF. Environmental supportiveness for physical activity in English schoolchildren: a study using Global Positioning Systems. Int J Behav Nutr Phys Act. 2009;6:42.CrossRefPubMedPubMedCentral Jones AP, Coombes EG, Griffin SJ, van Sluijs EMF. Environmental supportiveness for physical activity in English schoolchildren: a study using Global Positioning Systems. Int J Behav Nutr Phys Act. 2009;6:42.CrossRefPubMedPubMedCentral
58.
go back to reference Kneeshaw-Price S, Saelens BE, Sallis JF, Glanz K, Frank LD, Kerr J, et al. Children’s objective physical activity by location: why the neighborhood matters. Pediatr Exerc Sci. 2013;25(3):468–86.PubMedPubMedCentral Kneeshaw-Price S, Saelens BE, Sallis JF, Glanz K, Frank LD, Kerr J, et al. Children’s objective physical activity by location: why the neighborhood matters. Pediatr Exerc Sci. 2013;25(3):468–86.PubMedPubMedCentral
59.
go back to reference Biddle SJ, Gorely T, Marshall SJ, Cameron N. The prevalence of sedentary behavior and physical activity in leisure time: A study of Scottish adolescents using ecological momentary assessment. Prev Med. 2009;48(2):151–5.CrossRefPubMed Biddle SJ, Gorely T, Marshall SJ, Cameron N. The prevalence of sedentary behavior and physical activity in leisure time: A study of Scottish adolescents using ecological momentary assessment. Prev Med. 2009;48(2):151–5.CrossRefPubMed
60.
go back to reference Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth a review. Am J Prev Med. 2011;41:442–55.CrossRefPubMed Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth a review. Am J Prev Med. 2011;41:442–55.CrossRefPubMed
61.
go back to reference Bringolf-Isler B, Kriemler S, Mäder U, Dössegger A, Hofmann H, Puder JJ, et al. Relationship between the objectively-assessed neighborhood area and activity behavior in Swiss youth. Prev Med Rep. 2014;1:14–20.CrossRefPubMedPubMedCentral Bringolf-Isler B, Kriemler S, Mäder U, Dössegger A, Hofmann H, Puder JJ, et al. Relationship between the objectively-assessed neighborhood area and activity behavior in Swiss youth. Prev Med Rep. 2014;1:14–20.CrossRefPubMedPubMedCentral
62.
go back to reference Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. Prev Med. 2009;49(6):500–5.CrossRefPubMedPubMedCentral Jones A, Hillsdon M, Coombes E. Greenspace access, use, and physical activity: understanding the effects of area deprivation. Prev Med. 2009;49(6):500–5.CrossRefPubMedPubMedCentral
63.
go back to reference Ziviani J, Wadley D, Ward H, Macdonald D, Jenkins D, Rodger S. A place to play: socioeconomic and spatial factors in children’s physical activity. Aust Occup Ther J. 2008;55:2–11.CrossRefPubMed Ziviani J, Wadley D, Ward H, Macdonald D, Jenkins D, Rodger S. A place to play: socioeconomic and spatial factors in children’s physical activity. Aust Occup Ther J. 2008;55:2–11.CrossRefPubMed
64.
go back to reference Carver A, Timperio A, Crawford D. Playing it safe: the influence of neighbourhood safety on children’s physical activity. A review. Health Place. 2008;14(2):217–27.CrossRefPubMed Carver A, Timperio A, Crawford D. Playing it safe: the influence of neighbourhood safety on children’s physical activity. A review. Health Place. 2008;14(2):217–27.CrossRefPubMed
65.
go back to reference Wilson DK, Kirtland KA, Ainsworth BE, Addy CL. Socioeconomic status and perceptions of access and safety for physical activity. Ann Behav Med. 2004;28(1):20–28.CrossRefPubMed Wilson DK, Kirtland KA, Ainsworth BE, Addy CL. Socioeconomic status and perceptions of access and safety for physical activity. Ann Behav Med. 2004;28(1):20–28.CrossRefPubMed
67.
go back to reference Welk GJ. Use of accelerometry-based activity monitors to assess physical activity. In: Welk GJ, editor. Physical activity assessments for health-related research. Champaign, IL: Human Kinetics; 2002. p. 125–41. Welk GJ. Use of accelerometry-based activity monitors to assess physical activity. In: Welk GJ, editor. Physical activity assessments for health-related research. Champaign, IL: Human Kinetics; 2002. p. 125–41.
68.
go back to reference Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105:977–87.CrossRefPubMed Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105:977–87.CrossRefPubMed
69.
go back to reference Dossegger A, Ruch N, Jimmy G, Braun-Fahrlander C, Mader U, Hanggi J, et al. Reactivity to accelerometer measurement of children and adolescents. Med Sci Sports Exerc. 2014;46:1140–6.CrossRefPubMedPubMedCentral Dossegger A, Ruch N, Jimmy G, Braun-Fahrlander C, Mader U, Hanggi J, et al. Reactivity to accelerometer measurement of children and adolescents. Med Sci Sports Exerc. 2014;46:1140–6.CrossRefPubMedPubMedCentral
Metadata
Title
Spatial physical activity patterns among primary school children living in neighbourhoods of varying socioeconomic status: a cross-sectional study using accelerometry and Global Positioning System
Authors
Rahel Bürgi
Laura Tomatis
Kurt Murer
Eling D. de Bruin
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2016
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-016-2954-8

Other articles of this Issue 1/2016

BMC Public Health 1/2016 Go to the issue