Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Estimation of the benchmark dose of urinary cadmium as the reference level for renal dysfunction: a large sample study in five cadmium polluted areas in China

Authors: Shen Ke, Xi-Yu Cheng, Jie-Ying Zhang, Wen-Jing Jia, Hao Li, Hui-Fang Luo, Peng-He Ge, Ze-Min Liu, Hong-Mei Wang, Jin-Sheng He, Zhi-Nan Chen

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

Itai-itai disease primarily results from cadmium (Cd) exposure and is known as one of the four major pollution diseases in Japan. Cd pollution is more serious in several areas of China than in Japan. However, there is still a lack of information regarding the threshold level of Cd exposure for the adverse health effects in the general Chinese population. This study aims to evaluate the reference value of urinary Cd (UCd) for renal dysfunction in a Chinese population as the benchmark dose lower confidence limit (BMDL) based on a large sample survey.

Methods

A total of 6103 participants who lived in five Cd polluted areas of China participated in this study. We analyzed UCd levels as a biomarker of exposure and urinary β2-microglobulin (Uβ2-MG) levels as a renal tubular effect biomarker. The BMD studies were performed using BMD software. The benchmark response (BMR) was defined as a 10 % additional risk above the background.

Results

There was a positive correlation between the UCd levels and the prevalence of Uβ2-MG. The BMD of UCd for Uβ2-MG was estimated for each province. The findings showed that the BMD levels were related to the participants’ geographic region, which may be partially due to the large differences in Cd exposure level, ethnic group, lifestyle and diet of the sample population in these study areas. The reference level of UCd for the renal effects was further evaluated by combining the five sets of data from all 6103 subjects. The overall BMDLs of UCd for Uβ2-MG with an excess risk of 10 % were 2.00 μg/g creatinine (μg/g cr) in males and 1.69 μg/g cr in females, which were significantly lower than the World Health Organization (WHO) threshold level of 5 μg/g cr for Cd-related renal effects.

Conclusions

The selection of the sample population and geographic region affected the BMDL evaluation. Based on the findings of this survey of a large sample population, the UCd BMDLs for Uβ2-MG in males with BMRs at 10 % were 2.00 μg/g cr. The BMD was slightly lower in females, which indicated that females may be relatively more sensitive to Cd exposure than males.
Literature
1.
go back to reference Chen X, Gan CH, Zhu GY, Jin TY. Benchmark dose for estimation of cadmium reference level for osteoporosis in a Chinese female population. Food Chem Toxicol. 2013;55:592–5.CrossRefPubMed Chen X, Gan CH, Zhu GY, Jin TY. Benchmark dose for estimation of cadmium reference level for osteoporosis in a Chinese female population. Food Chem Toxicol. 2013;55:592–5.CrossRefPubMed
2.
go back to reference Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–8.CrossRefPubMed Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–8.CrossRefPubMed
3.
go back to reference Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye TT, et al. Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio. 2002;31:478–81.CrossRefPubMed Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye TT, et al. Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio. 2002;31:478–81.CrossRefPubMed
4.
go back to reference Volpe MG, Cara FL, Volpe F, De Mattia A, Serino V, Petitto F, et al. Heavy metal uptake in the enological food chain. Food Chem. 2009;117:553–60.CrossRef Volpe MG, Cara FL, Volpe F, De Mattia A, Serino V, Petitto F, et al. Heavy metal uptake in the enological food chain. Food Chem. 2009;117:553–60.CrossRef
5.
go back to reference IARC (International Agency for Research on Cancer). Beryllium, cadmium, mercury and exposures in the glass manufacturing industry, International Agency for Research on Cancer, Lyon. France. 1993;58:119–238. IARC (International Agency for Research on Cancer). Beryllium, cadmium, mercury and exposures in the glass manufacturing industry, International Agency for Research on Cancer, Lyon. France. 1993;58:119–238.
6.
go back to reference Bi X, Feng X, Yang Y, Qiu G, Li G, Li F, et al. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ Int. 2006;32:883–90.CrossRefPubMed Bi X, Feng X, Yang Y, Qiu G, Li G, Li F, et al. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ Int. 2006;32:883–90.CrossRefPubMed
7.
go back to reference Ke S, Qiao S. Cadmium toxicity is much more terrible than the beast: Preliminary studies of adverse health effects of cadmium pollution in China. Beijing: Huaxia Press; 2013. Ke S, Qiao S. Cadmium toxicity is much more terrible than the beast: Preliminary studies of adverse health effects of cadmium pollution in China. Beijing: Huaxia Press; 2013.
8.
go back to reference Li P, Wang X, Allinson G, Li X, Xiong X. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J Hazard Mater. 2009;161:516–21.CrossRefPubMed Li P, Wang X, Allinson G, Li X, Xiong X. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J Hazard Mater. 2009;161:516–21.CrossRefPubMed
9.
go back to reference Dong M, Zhao YL, Zhou XM, Ku WZ. Current situation of soil Cd pollution and research progress of heavy metal repairing. J Green Sci Technol. 2012;4:212–5 (In Chinese). Dong M, Zhao YL, Zhou XM, Ku WZ. Current situation of soil Cd pollution and research progress of heavy metal repairing. J Green Sci Technol. 2012;4:212–5 (In Chinese).
10.
go back to reference Crump KS. A new method for determining allowable daily intakes. Fundam Appl Toxicol. 1984;4:854–71.CrossRefPubMed Crump KS. A new method for determining allowable daily intakes. Fundam Appl Toxicol. 1984;4:854–71.CrossRefPubMed
11.
go back to reference Gaylor D, Ryan L, Krewski D, Zhu Y. Procedures for calculation benchmark doses for health risk assessment. Regul Toxicol Pharmacol. 1998;28:150–64.CrossRefPubMed Gaylor D, Ryan L, Krewski D, Zhu Y. Procedures for calculation benchmark doses for health risk assessment. Regul Toxicol Pharmacol. 1998;28:150–64.CrossRefPubMed
12.
go back to reference Crump KS. Calculation of benchmark doses from continuous data. Risk Anal. 1995;15:79–89.CrossRef Crump KS. Calculation of benchmark doses from continuous data. Risk Anal. 1995;15:79–89.CrossRef
13.
go back to reference Kobayshi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, et al. Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, β2-microglobulin, and N-acetyl-β-d-glucosaminidase in cadmium nonpolluted regions in Japan. Environ Res. 2006;101:401–6.CrossRef Kobayshi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, et al. Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, β2-microglobulin, and N-acetyl-β-d-glucosaminidase in cadmium nonpolluted regions in Japan. Environ Res. 2006;101:401–6.CrossRef
14.
go back to reference Kobayshi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, et al. Estimation of benchmark dose for renal dysfunction in a cadmium non-polluted area in Japan. J Appl Toxicol. 2006;26:351–5.CrossRef Kobayshi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, et al. Estimation of benchmark dose for renal dysfunction in a cadmium non-polluted area in Japan. J Appl Toxicol. 2006;26:351–5.CrossRef
15.
go back to reference Suwazono Y, Nogawa K, Uetani M, Kido T, Nakagawa H. Reassessment of the threshold of urinary cadmium by using hybrid approach in a cadmium non-polluted area in Japan. Int J Hyg Environ Health. 2011;214:175–8.CrossRefPubMed Suwazono Y, Nogawa K, Uetani M, Kido T, Nakagawa H. Reassessment of the threshold of urinary cadmium by using hybrid approach in a cadmium non-polluted area in Japan. Int J Hyg Environ Health. 2011;214:175–8.CrossRefPubMed
16.
go back to reference Suwazono Y, Nogawa K, Uetani M, Nakada S, Kido T, Nakagawa H. Application of the hybrid approach to the benchmark dose of urinary cadmium as the reference level for renal effects in cadmium polluted and non-polluted areas in Japan. Environ Res. 2011;111:312–4.CrossRefPubMed Suwazono Y, Nogawa K, Uetani M, Nakada S, Kido T, Nakagawa H. Application of the hybrid approach to the benchmark dose of urinary cadmium as the reference level for renal effects in cadmium polluted and non-polluted areas in Japan. Environ Res. 2011;111:312–4.CrossRefPubMed
17.
go back to reference Suwazono Y, Sand S, Vahter M, Filipsson AF, Skerfving S, Lidfeldt J, et al. Benchmark dose for cadmium-induce renal effects in humans. Environ Health Perspect. 2006;114:1072–6.CrossRefPubMedPubMedCentral Suwazono Y, Sand S, Vahter M, Filipsson AF, Skerfving S, Lidfeldt J, et al. Benchmark dose for cadmium-induce renal effects in humans. Environ Health Perspect. 2006;114:1072–6.CrossRefPubMedPubMedCentral
18.
go back to reference Jin TY, Wu XW, Tang YQ, Nordberg M, Bernard A, Ye TT, et al. Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. BioMetals. 2004;17:525–30.CrossRefPubMed Jin TY, Wu XW, Tang YQ, Nordberg M, Bernard A, Ye TT, et al. Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. BioMetals. 2004;17:525–30.CrossRefPubMed
19.
go back to reference Shao B, Jin TY, Wu XW, Kong QH, Ye TT. Application of benchmark dose (BMD) in estimating biological exposure limit (BEL) to cadmium. Biomed Environ Sci. 2007;20:460–4.PubMed Shao B, Jin TY, Wu XW, Kong QH, Ye TT. Application of benchmark dose (BMD) in estimating biological exposure limit (BEL) to cadmium. Biomed Environ Sci. 2007;20:460–4.PubMed
20.
go back to reference Zhao HH, Wang Q, Chen JW, Zhang YZ, Zhou YK, Ye LX. Application of benchmark dose (BMD) in health risk assessment of renal dysfunction caused by cadmium. Modern Prev Med. 2009;36:1038–40 (In Chinese). Zhao HH, Wang Q, Chen JW, Zhang YZ, Zhou YK, Ye LX. Application of benchmark dose (BMD) in health risk assessment of renal dysfunction caused by cadmium. Modern Prev Med. 2009;36:1038–40 (In Chinese).
21.
go back to reference Wang Q, Hu J, Han TX, Li M, Zhao HH, Chen JW, et al. Application of BMD approach to identify thresholds of cadmium-induced renal effect among 35 to 55 year-old women in two cadmium polluted counties in China. Plos One. 2014;9(2):1–6. Wang Q, Hu J, Han TX, Li M, Zhao HH, Chen JW, et al. Application of BMD approach to identify thresholds of cadmium-induced renal effect among 35 to 55 year-old women in two cadmium polluted counties in China. Plos One. 2014;9(2):1–6.
22.
go back to reference Nishijo M, Suwazono Y, Ruangyuttikarn W, Kowit N, Witaya S, Kazuhiro N, et al. Risk assessment for Thai population: benchmark dose of urinary and blood cadmium levels for renal effects by hybrid approach of inhabitants living in polluted and non-polluted areas in Thailand. BMC Public Health. 2014;14:702.CrossRefPubMedPubMedCentral Nishijo M, Suwazono Y, Ruangyuttikarn W, Kowit N, Witaya S, Kazuhiro N, et al. Risk assessment for Thai population: benchmark dose of urinary and blood cadmium levels for renal effects by hybrid approach of inhabitants living in polluted and non-polluted areas in Thailand. BMC Public Health. 2014;14:702.CrossRefPubMedPubMedCentral
23.
go back to reference Gao YZ, He JZ, Ling WT. Fractionation of heavy metal cadmium and copper in some soils in Hubei province. J Huazhong Agr Univ. 2001;20:143–7 (In Chinese). Gao YZ, He JZ, Ling WT. Fractionation of heavy metal cadmium and copper in some soils in Hubei province. J Huazhong Agr Univ. 2001;20:143–7 (In Chinese).
24.
go back to reference Shang Q, Bai XT, Zhang WL, Han JX. Report of survey of cadmium pollution and its effect on human health status in Hezhang, Guizhou. 2010. (In Chinese). Shang Q, Bai XT, Zhang WL, Han JX. Report of survey of cadmium pollution and its effect on human health status in Hezhang, Guizhou. 2010. (In Chinese).
25.
go back to reference Sun L, Zhao L, Zhang LJ. Cadmium pollution caused by artisanal zinc-smelting in Hezhang country. Chin J Public Health. 2013;29:541–3 (In Chinese). Sun L, Zhao L, Zhang LJ. Cadmium pollution caused by artisanal zinc-smelting in Hezhang country. Chin J Public Health. 2013;29:541–3 (In Chinese).
26.
go back to reference Jin TY, Nordberg G, Wu X, Ye T, Kong Q, Wang Z, et al. Urinary N-acetyl-β-Dglucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population. Environ Res. 1999;81(2):167–73.CrossRefPubMed Jin TY, Nordberg G, Wu X, Ye T, Kong Q, Wang Z, et al. Urinary N-acetyl-β-Dglucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population. Environ Res. 1999;81(2):167–73.CrossRefPubMed
27.
28.
go back to reference Jin TY, Nordberg M, Frech W, Dumont X, Bernard A, Ye T, et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (China Cad). BioMetals. 2002;15:397–410.CrossRefPubMed Jin TY, Nordberg M, Frech W, Dumont X, Bernard A, Ye T, et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (China Cad). BioMetals. 2002;15:397–410.CrossRefPubMed
29.
go back to reference WHO-IPCS. Cadmium. Environmental Health Criteria, vol. 134. Geneva: World Health Organization; 1992. p. 146–50. WHO-IPCS. Cadmium. Environmental Health Criteria, vol. 134. Geneva: World Health Organization; 1992. p. 146–50.
30.
go back to reference Shimizu A, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Inaba T, et al. Estimation of benchmark doses for urinary cadmium based on β2-microglobulin excretion in cadmium polluted regions of the Kakehashi River basin, Japan. Int J Environ Health Res. 2006;16:329–37.CrossRefPubMed Shimizu A, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Inaba T, et al. Estimation of benchmark doses for urinary cadmium based on β2-microglobulin excretion in cadmium polluted regions of the Kakehashi River basin, Japan. Int J Environ Health Res. 2006;16:329–37.CrossRefPubMed
31.
go back to reference MOHC (Ministry of Health of the People’s Republic of China). Standard of China, GB/T 17221–1998, Discriminant standard for health hazard area caused by environmental cadmium pollution. Beijing: Standards Press of China; 1998. MOHC (Ministry of Health of the People’s Republic of China). Standard of China, GB/T 17221–1998, Discriminant standard for health hazard area caused by environmental cadmium pollution. Beijing: Standards Press of China; 1998.
32.
go back to reference Kido T, Honda R, Tsuritan I. Progress of renal dysfunction in inhabitants environmentally exposed to cadmium. Arch Environ Health. 1988;43:213–7.CrossRefPubMed Kido T, Honda R, Tsuritan I. Progress of renal dysfunction in inhabitants environmentally exposed to cadmium. Arch Environ Health. 1988;43:213–7.CrossRefPubMed
33.
go back to reference Wang Q, Hu J, Han TX, Li M, Zhao HH, Chen JW, et al. Application of BMD approach to identify thresholds of cadmium-induced renal effect among 35 to 55 year-old women in two cadmium polluted counties in China. Plos One. 2014;9:e87817.CrossRefPubMedPubMedCentral Wang Q, Hu J, Han TX, Li M, Zhao HH, Chen JW, et al. Application of BMD approach to identify thresholds of cadmium-induced renal effect among 35 to 55 year-old women in two cadmium polluted counties in China. Plos One. 2014;9:e87817.CrossRefPubMedPubMedCentral
34.
go back to reference Oo YK, Kobayashi E, Nogawa K, Okubo Y, Suwazono Y, Kido T, et al. Renal effects of cadmium intake of a Japanese general population in two areas unpolluted by cadmium. Arch Environ Health. 2000;55:98–103.CrossRefPubMed Oo YK, Kobayashi E, Nogawa K, Okubo Y, Suwazono Y, Kido T, et al. Renal effects of cadmium intake of a Japanese general population in two areas unpolluted by cadmium. Arch Environ Health. 2000;55:98–103.CrossRefPubMed
35.
go back to reference Bao WH. Relationship of urinary cadmium and NAG, β2-MG and α1-MG in smelting workers. J Guangxi Med Univ. 2012;29:740–1 (In Chinese). Bao WH. Relationship of urinary cadmium and NAG, β2-MG and α1-MG in smelting workers. J Guangxi Med Univ. 2012;29:740–1 (In Chinese).
36.
go back to reference Kobayshi E, Suwazono Y, Uetani M, Honda R, Nishijo M, Kido T, et al. Estimation of benchmark dose as threshold levels of urinary cadmium, based on excretion of β2-microgloblulin in cadmium-polluted and non-polluted regions in Japan. Toxicol Sci. 2008;179:108–12. Kobayshi E, Suwazono Y, Uetani M, Honda R, Nishijo M, Kido T, et al. Estimation of benchmark dose as threshold levels of urinary cadmium, based on excretion of β2-microgloblulin in cadmium-polluted and non-polluted regions in Japan. Toxicol Sci. 2008;179:108–12.
37.
go back to reference Hong F, Jin TY, Zhang AH. Calculation of the combined renal dysfunction risk in patients co-exposed to arsenicum and cadmium by using benchmark dose method. Chin J Prev Med. 2004;38:374–8 (In Chinese). Hong F, Jin TY, Zhang AH. Calculation of the combined renal dysfunction risk in patients co-exposed to arsenicum and cadmium by using benchmark dose method. Chin J Prev Med. 2004;38:374–8 (In Chinese).
38.
go back to reference Nakagawa H, Nishijo M, Morikawa Y, Miura K, Tawara K, Kuriwaki J, et al. Urinary cadmium and mortality among inhabitants of a cadmium-polluted area in Japan. Environ Res. 2006;16:273–9. Nakagawa H, Nishijo M, Morikawa Y, Miura K, Tawara K, Kuriwaki J, et al. Urinary cadmium and mortality among inhabitants of a cadmium-polluted area in Japan. Environ Res. 2006;16:273–9.
39.
go back to reference JECFA (Joint FAO/WHO Expert Committee on Food Additives). Summary and conclusions of the sixty-first meeting. Rome, Italy, 10–19 June 2003. 2003. JECFA (Joint FAO/WHO Expert Committee on Food Additives). Summary and conclusions of the sixty-first meeting. Rome, Italy, 10–19 June 2003. 2003.
40.
go back to reference JECFA (Joint FAO/WHO Expert Committee on Food Additives). Summary and conclusions of the seventy-third meeting, Geneva, 8–17 June 2010. 2010. JECFA (Joint FAO/WHO Expert Committee on Food Additives). Summary and conclusions of the seventy-third meeting, Geneva, 8–17 June 2010. 2010.
42.
go back to reference ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for cadmium (Final Report). NTIS Accession No. PB99-166621. Atlanta, GA: Agency for Toxic Substances and Disease Registry. 1999. p. 434. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for cadmium (Final Report). NTIS Accession No. PB99-166621. Atlanta, GA: Agency for Toxic Substances and Disease Registry. 1999. p. 434.
45.
go back to reference Aylward LL, Kirman CR, Schoeny R, Portier CJ, Hays SM. Evaluation of biomonitoring data from the CDC national exposure report in a risk assessment context: perspectives across chemicals. Environ Health Persp. 2013;121(3):287–94.CrossRef Aylward LL, Kirman CR, Schoeny R, Portier CJ, Hays SM. Evaluation of biomonitoring data from the CDC national exposure report in a risk assessment context: perspectives across chemicals. Environ Health Persp. 2013;121(3):287–94.CrossRef
46.
go back to reference Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehringa M. Update of the reference and HBM values derived by the German Human Biomonitoring Commission. Int J Hyg Environ Health. 2011;215:26–35.CrossRefPubMed Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehringa M. Update of the reference and HBM values derived by the German Human Biomonitoring Commission. Int J Hyg Environ Health. 2011;215:26–35.CrossRefPubMed
47.
go back to reference MOHC (Minister of Health of the People’s Republic of China). Standard of China, WS/T 113–1999, Biological limit values for occupational exposure to cadmium and its compounds. Beijing: Standards Press of China; 1999. MOHC (Minister of Health of the People’s Republic of China). Standard of China, WS/T 113–1999, Biological limit values for occupational exposure to cadmium and its compounds. Beijing: Standards Press of China; 1999.
Metadata
Title
Estimation of the benchmark dose of urinary cadmium as the reference level for renal dysfunction: a large sample study in five cadmium polluted areas in China
Authors
Shen Ke
Xi-Yu Cheng
Jie-Ying Zhang
Wen-Jing Jia
Hao Li
Hui-Fang Luo
Peng-He Ge
Ze-Min Liu
Hong-Mei Wang
Jin-Sheng He
Zhi-Nan Chen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-2021-x

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue