Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Study protocol

Longitudinal active living research to address physical inactivity and sedentary behaviour in children in transition from preadolescence to adolescence

Authors: Nazeem Muhajarine, Tarun R Katapally, Daniel Fuller, Kevin G Stanley, Daniel Rainham

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

Children can be highly active and highly sedentary on the same day! For instance, a child can spend a couple of hours playing sports, and then spend the rest of the day in front of a screen. A focus on examining both physical activity and sedentary behaviour throughout the day and in all seasons in a year is necessary to generate comprehensive evidence to curb childhood obesity. To achieve this, we need to understand where within a city are children active or sedentary in all seasons. This active living study based in Saskatoon, Canada, aims to understand the role played by modifiable urban built environments in mitigating, or exacerbating, seasonal effects on children’s physical activity and sedentary behaviour in a population of children in transition from preadolescence to adolescence.

Methods/Design

Designed as an observational, longitudinal investigation this study will recruit 800 Canadian children 10–14 years of age. Data will be obtained from children representing all socioeconomic categories within all types of neighbourhoods built in a range of urban designs. Built environment characteristics will be measured using previously validated neighbourhood audit and observational tools. Neighbourhood level socioeconomic variables customized to Saskatoon neighbourhoods from 2011 Statistics Canada’s National Household Survey will be used to control for neighbourhood social environment. The validated Smart Cities Healthy Kids questionnaire will be administered to capture children’s behaviour and perception of a range of factors that influence their activity, household (including family socioeconomic factors), parental, peer and neighbourhood influence on independent mobility. The outcome measures, different intensities of physical activity and sedentary behaviour, will be collected using global positioning system equipped accelerometers in all four seasons. Each accelerometry cycle will be matched with weather data obtained from Environment Canada. Extensive weather data will be accessed and classified into one of six distinct air mass categories for each day of accelerometry. Computational and spatial analytical techniques will be utilized to understand the multi-level influence of environmental exposures on physical activity and sedentary behaviour in all seasons.

Discussion

This approach will help us understand the influence of urban environment on children’s activity, thus paving the way to modify urban spaces to increase physical activity and decrease sedentary behaviour in children in all four seasons. Lack of physical activity and rising sedentariness is associated with rising childhood obesity, and childhood obesity in turn is linked to many chronic conditions over the life course. Understanding the interaction of children with urban spaces will reveal new knowledge, and when translated to actions will provide a strong basis for informing future urban planning policy.
Literature
1.
go back to reference Sothern MS, Loftin M, Suskind RM, Udall JN, Blecker U. The health benefits of physical activity in children and adolescents: implications for chronic disease prevention. Eur J Pediatr. 1999;158:271–4.CrossRefPubMed Sothern MS, Loftin M, Suskind RM, Udall JN, Blecker U. The health benefits of physical activity in children and adolescents: implications for chronic disease prevention. Eur J Pediatr. 1999;158:271–4.CrossRefPubMed
2.
go back to reference Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral
3.
go back to reference Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305.CrossRefPubMed Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305.CrossRefPubMed
4.
go back to reference Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelun U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.CrossRefPubMed Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelun U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.CrossRefPubMed
5.
go back to reference Sallis JF, Linton LS, Kraft MK. The first active living research conference: growth of a transdisciplinary field. Am J Prev Med. 2005;28(2 Suppl 2):93–5.CrossRefPubMed Sallis JF, Linton LS, Kraft MK. The first active living research conference: growth of a transdisciplinary field. Am J Prev Med. 2005;28(2 Suppl 2):93–5.CrossRefPubMed
6.
go back to reference Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322.CrossRefPubMed Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322.CrossRefPubMed
7.
go back to reference Hamilton MT, Healy GN, Dunstan DW, Zderic TH, Owen N. Too little exercise and too much sitting: inactivity physiology and the need for new recommendations on sedentary behavior. Curr Cardiovasc Risk Rep. 2008;2:292–8.CrossRefPubMedPubMedCentral Hamilton MT, Healy GN, Dunstan DW, Zderic TH, Owen N. Too little exercise and too much sitting: inactivity physiology and the need for new recommendations on sedentary behavior. Curr Cardiovasc Risk Rep. 2008;2:292–8.CrossRefPubMedPubMedCentral
8.
go back to reference Hamilton M, Hamilton D, Zderic W. Exercise physiology versus inactivity physiology: an essential concept for understanding lipoprotein lipase regulation. Exerc Sport Sci Rev. 2004;32:161–6.CrossRefPubMedPubMedCentral Hamilton M, Hamilton D, Zderic W. Exercise physiology versus inactivity physiology: an essential concept for understanding lipoprotein lipase regulation. Exerc Sport Sci Rev. 2004;32:161–6.CrossRefPubMedPubMedCentral
9.
go back to reference Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56:2655–67.CrossRefPubMed Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56:2655–67.CrossRefPubMed
10.
go back to reference Timperio A, Crawford D, Telford A, Salmon J. Perceptions about the local neighborhood and walking and cycling among children. Prev Med. 2004;38(1):39–47.CrossRefPubMed Timperio A, Crawford D, Telford A, Salmon J. Perceptions about the local neighborhood and walking and cycling among children. Prev Med. 2004;38(1):39–47.CrossRefPubMed
11.
go back to reference Hume C, Salmon J, Ball K. Children’s perceptions of their home and neighborhood environments, and their association with objectively measured physical activity: a qualitative and quantitative study. Health Educ Res. 2005;20(1):1–13.CrossRefPubMed Hume C, Salmon J, Ball K. Children’s perceptions of their home and neighborhood environments, and their association with objectively measured physical activity: a qualitative and quantitative study. Health Educ Res. 2005;20(1):1–13.CrossRefPubMed
12.
go back to reference Evenson KR, Birnbaum AS, Bedimo-Rung AL, Sallis JF, Voorhees CC, Ring K, et al. Girls’ perception of physical environmental factors and transportation: reliability and association with physical activity and active transport to school. Int J Behav Nutr Phys Act. 2006;3(28):1–16. Evenson KR, Birnbaum AS, Bedimo-Rung AL, Sallis JF, Voorhees CC, Ring K, et al. Girls’ perception of physical environmental factors and transportation: reliability and association with physical activity and active transport to school. Int J Behav Nutr Phys Act. 2006;3(28):1–16.
13.
go back to reference Centers for Disease Control and Prevention. Physical activity levels among children aged 9 to 13 years. Morb Mortal Wkly Rep. 2003;52(33):785–8. Centers for Disease Control and Prevention. Physical activity levels among children aged 9 to 13 years. Morb Mortal Wkly Rep. 2003;52(33):785–8.
14.
go back to reference Romero AJ, Robinson TN, Kraemer HC, Erickson SJ, Haydel KF, Mendoza F, et al. Are perceived neighborhood hazards a barrier to physical activity in children? Arch Pediatr Adolesc Med. 2001;155(10):1143–8.CrossRefPubMed Romero AJ, Robinson TN, Kraemer HC, Erickson SJ, Haydel KF, Mendoza F, et al. Are perceived neighborhood hazards a barrier to physical activity in children? Arch Pediatr Adolesc Med. 2001;155(10):1143–8.CrossRefPubMed
15.
go back to reference Molnar BE, Gortmaker SL, Bull FC, Buka SL. Unsafe to play? Neighborhood disorder and lack of safety predict reduced physical activity among urban children and adolescents. Am J Health Promot. 2004;18(5):378–86.CrossRefPubMed Molnar BE, Gortmaker SL, Bull FC, Buka SL. Unsafe to play? Neighborhood disorder and lack of safety predict reduced physical activity among urban children and adolescents. Am J Health Promot. 2004;18(5):378–86.CrossRefPubMed
16.
go back to reference Bricker SK, Kanny D, Mellinger-Birdsong A, Powel KE, Shisler JL. School transportation modes – Georgia, 100. Morb Mortal Wkly Rep. 2002;51(32):704–5. Bricker SK, Kanny D, Mellinger-Birdsong A, Powel KE, Shisler JL. School transportation modes – Georgia, 100. Morb Mortal Wkly Rep. 2002;51(32):704–5.
17.
go back to reference Dellinger AM, Staunton CE. Barriers to children walking and biking to school in the United States, 1999. Morb Mortal Wkly Rep. 2002;51(32):701–4. Dellinger AM, Staunton CE. Barriers to children walking and biking to school in the United States, 1999. Morb Mortal Wkly Rep. 2002;51(32):701–4.
18.
go back to reference DiGuiseppi C, Roberts I, Li L, Allen D. Determinants of car travel on daily journeys to school: cross sectional survey of primary school children. Br Med J. 1998;316:1426–8.CrossRef DiGuiseppi C, Roberts I, Li L, Allen D. Determinants of car travel on daily journeys to school: cross sectional survey of primary school children. Br Med J. 1998;316:1426–8.CrossRef
19.
go back to reference Lee TR, Rowe N. Parent’s and children’s perceived risks of the journey to school. Arch Behav. 1994;10(4):379–89. Lee TR, Rowe N. Parent’s and children’s perceived risks of the journey to school. Arch Behav. 1994;10(4):379–89.
20.
go back to reference Van Der Horst K, Paw MJ, Twisk JW, Van Mechelen WA. Brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef Van Der Horst K, Paw MJ, Twisk JW, Van Mechelen WA. Brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.CrossRef
21.
go back to reference Ferreira I, van der Horst K, Wendel-Vos W, Kremers S, van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth – a review and update. Obes Rev. 2006;8:129–54.CrossRef Ferreira I, van der Horst K, Wendel-Vos W, Kremers S, van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth – a review and update. Obes Rev. 2006;8:129–54.CrossRef
22.
go back to reference Cillero IH, Jago R. Systematic review of correlates of screen-viewing among young children. Prev Med. 2010;51:3–10.CrossRef Cillero IH, Jago R. Systematic review of correlates of screen-viewing among young children. Prev Med. 2010;51:3–10.CrossRef
23.
go back to reference Tremblay MS, Gray CE, Akinroye K, Harrington DM, Katzmarzyk PT, Lambert EV, et al. Physical activity of children: a global matrix of grades comparing 15 countries. J Phys Act Hlth. 2014;11(Supp 1):S113–25. Tremblay MS, Gray CE, Akinroye K, Harrington DM, Katzmarzyk PT, Lambert EV, et al. Physical activity of children: a global matrix of grades comparing 15 countries. J Phys Act Hlth. 2014;11(Supp 1):S113–25.
24.
go back to reference Ma Y, Olendzki BC, Li W, Hafner AR, Chiriboga D, Hebert JR, et al. Seasonal variation in food intake, physical activity and body weight in a predominantly overweight population. Eur J Clin Nutr. 2006;60(4):519–28.CrossRefPubMedPubMedCentral Ma Y, Olendzki BC, Li W, Hafner AR, Chiriboga D, Hebert JR, et al. Seasonal variation in food intake, physical activity and body weight in a predominantly overweight population. Eur J Clin Nutr. 2006;60(4):519–28.CrossRefPubMedPubMedCentral
25.
go back to reference Beighle A, Alderman B, Morgan CF, Le Masurier G. Seasonality in children’s pedometer-measured physical activity levels. Res Q Exerc Sport. 2008;79(2):256–60.CrossRefPubMed Beighle A, Alderman B, Morgan CF, Le Masurier G. Seasonality in children’s pedometer-measured physical activity levels. Res Q Exerc Sport. 2008;79(2):256–60.CrossRefPubMed
26.
go back to reference Kolle E, Steene-Johannessen J, Andersen LB, Anderssen SA. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: a crosssectional study. Int J Behav Nutr Phys Act. 2009;6:36.CrossRefPubMedPubMedCentral Kolle E, Steene-Johannessen J, Andersen LB, Anderssen SA. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: a crosssectional study. Int J Behav Nutr Phys Act. 2009;6:36.CrossRefPubMedPubMedCentral
27.
go back to reference Kristensen PL, Korsholm L, Møller NC, Wedderkopp N, Andersen LB, Froberg K. Sources of variation in habitual physical activity of children and adolescents: the European youth heart study. Scand J Med Sci Sports. 2008;18(3):298–308.CrossRefPubMed Kristensen PL, Korsholm L, Møller NC, Wedderkopp N, Andersen LB, Froberg K. Sources of variation in habitual physical activity of children and adolescents: the European youth heart study. Scand J Med Sci Sports. 2008;18(3):298–308.CrossRefPubMed
28.
go back to reference McCormack GR, Friedenreich C, Shiell A, Giles-Corti B, Doyle-Baker PK. Sex- and age-specific seasonal variations in physical activity among adults. J Epidemiol Community Health. 2010;64:1010–6.CrossRefPubMed McCormack GR, Friedenreich C, Shiell A, Giles-Corti B, Doyle-Baker PK. Sex- and age-specific seasonal variations in physical activity among adults. J Epidemiol Community Health. 2010;64:1010–6.CrossRefPubMed
29.
go back to reference Carson V, John SC, Cutumisu N, Boule N, Edwards J. Seasonal variation in physical activity among preschool children in a northern Canadian city. Res Q Exerc Sport. 2010;81(4):392–9.CrossRefPubMed Carson V, John SC, Cutumisu N, Boule N, Edwards J. Seasonal variation in physical activity among preschool children in a northern Canadian city. Res Q Exerc Sport. 2010;81(4):392–9.CrossRefPubMed
30.
go back to reference Merchant AT, Dehghan M, Akhtar-Danesh N. Seasonal variation in leisure-time physical activity among Canadians. Can J Public Health. 2007;98(3):203–8.PubMed Merchant AT, Dehghan M, Akhtar-Danesh N. Seasonal variation in leisure-time physical activity among Canadians. Can J Public Health. 2007;98(3):203–8.PubMed
31.
go back to reference Harrison F, Jones AP, Bentham G, Van Sluijs EMF, Cassidy A, Griffin SJ. The impact of rainfall and school break time policies on physical activity in 9–10 year old British children: a repeated measures study. Int J Behav Nutr Phys Act. 2001;8:47.CrossRef Harrison F, Jones AP, Bentham G, Van Sluijs EMF, Cassidy A, Griffin SJ. The impact of rainfall and school break time policies on physical activity in 9–10 year old British children: a repeated measures study. Int J Behav Nutr Phys Act. 2001;8:47.CrossRef
32.
go back to reference Peel MC, Finlayson BL, McMahon TA. Updated world map of the Kӧppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–44.CrossRef Peel MC, Finlayson BL, McMahon TA. Updated world map of the Kӧppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–44.CrossRef
33.
go back to reference Frittis HC, Lough JM. An estimate of average annual temperature variations for North America, 1602 to 1961. Clim Change. 1985;7:203–24.CrossRef Frittis HC, Lough JM. An estimate of average annual temperature variations for North America, 1602 to 1961. Clim Change. 1985;7:203–24.CrossRef
34.
go back to reference Zhang X, Vincent LA, Hogg WD, Niitsoo A. Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean. 2000;38(3):395–429.CrossRef Zhang X, Vincent LA, Hogg WD, Niitsoo A. Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean. 2000;38(3):395–429.CrossRef
35.
go back to reference Gauvin L, Richard L, Craig CL, Spivock M, Riva M, Forster M, et al. Walkability to active living potential: an “ecometric” validation study. Am J Prev Med. 2005;28(2S2):126–33.CrossRefPubMed Gauvin L, Richard L, Craig CL, Spivock M, Riva M, Forster M, et al. Walkability to active living potential: an “ecometric” validation study. Am J Prev Med. 2005;28(2S2):126–33.CrossRefPubMed
36.
go back to reference Craig CL, Brownson RC, Cragg SE, Dunn AL. Exploring the effect of the environment on physical activity: a study examining walking to work. Am J Prev Med. 2002;23(2 suppl 1):36–43.CrossRefPubMed Craig CL, Brownson RC, Cragg SE, Dunn AL. Exploring the effect of the environment on physical activity: a study examining walking to work. Am J Prev Med. 2002;23(2 suppl 1):36–43.CrossRefPubMed
37.
go back to reference Day K, Boarnet M, Alfonzo M, Forsyth A. The Irvine–Minnesota inventory to measure built environments: development. Am J Prev Med. 2006;30(2):144–52.CrossRefPubMed Day K, Boarnet M, Alfonzo M, Forsyth A. The Irvine–Minnesota inventory to measure built environments: development. Am J Prev Med. 2006;30(2):144–52.CrossRefPubMed
38.
go back to reference Boarnet MG, Day K, Alfonzo M, Forsyth A, Oakes M. The Irvine-Minnesota inventory to measure built environments: reliability tests. Am J Prev Med. 2006;30(2):153–9.CrossRefPubMed Boarnet MG, Day K, Alfonzo M, Forsyth A, Oakes M. The Irvine-Minnesota inventory to measure built environments: reliability tests. Am J Prev Med. 2006;30(2):153–9.CrossRefPubMed
39.
go back to reference Katapally T, Muhajarine N, Smart Cities Healthy Kids Research Team. How does neighbourhood built environment influence moderate to vigorous physical activity in 10–14 year old children. Am J Epidemiol. 2012;176(1):80–2.CrossRef Katapally T, Muhajarine N, Smart Cities Healthy Kids Research Team. How does neighbourhood built environment influence moderate to vigorous physical activity in 10–14 year old children. Am J Epidemiol. 2012;176(1):80–2.CrossRef
40.
go back to reference Katapally TR, Muhajarine N. Towards uniform accelerometry analysis: a standardization methodology to minimize measurement bias due to systematic accelerometer wear-time variation. J Sports Sci Med. 2014;13:379–86.PubMedPubMedCentral Katapally TR, Muhajarine N. Towards uniform accelerometry analysis: a standardization methodology to minimize measurement bias due to systematic accelerometer wear-time variation. J Sports Sci Med. 2014;13:379–86.PubMedPubMedCentral
42.
go back to reference Ross NA, Tremblay S, Khan S, Crouse D, Tremblay M, Berthelot JM. Body mass index in urban Canada: neighborhood and metropolitan area effects. Am J Public Health. 2007;97(3):500–8.CrossRefPubMedPubMedCentral Ross NA, Tremblay S, Khan S, Crouse D, Tremblay M, Berthelot JM. Body mass index in urban Canada: neighborhood and metropolitan area effects. Am J Public Health. 2007;97(3):500–8.CrossRefPubMedPubMedCentral
44.
go back to reference Pampalon R, Hamel D, Gamache P, Raymond G. A deprivation index for health planning in Canada. Chronic Dis Can. 2009;29(4):178–91.PubMed Pampalon R, Hamel D, Gamache P, Raymond G. A deprivation index for health planning in Canada. Chronic Dis Can. 2009;29(4):178–91.PubMed
46.
go back to reference Fuller DL, Muhajarine N, Smart cities healthy kids research team. Replication of the neighbourhood active living potential measure in Saskatoon, Canada. Am J Prev Med. 2010;39(4):364–7.CrossRefPubMed Fuller DL, Muhajarine N, Smart cities healthy kids research team. Replication of the neighbourhood active living potential measure in Saskatoon, Canada. Am J Prev Med. 2010;39(4):364–7.CrossRefPubMed
47.
go back to reference Heil DP. Predicting activity energy expenditure using the Actical® activity monitor. Res Q Exerc Sport. 2006;77(1):64–80.CrossRefPubMed Heil DP. Predicting activity energy expenditure using the Actical® activity monitor. Res Q Exerc Sport. 2006;77(1):64–80.CrossRefPubMed
48.
go back to reference Orme M, Wijndaele K, Sharp SJ, Westgate K, Ekelund U, Brage S1. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. Int J Behav Nutr Phys Act. 2014;11(1):34.CrossRefPubMedPubMedCentral Orme M, Wijndaele K, Sharp SJ, Westgate K, Ekelund U, Brage S1. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. Int J Behav Nutr Phys Act. 2014;11(1):34.CrossRefPubMedPubMedCentral
49.
go back to reference Toftager M1, Kristensen PL, Oliver M, Duncan S, Christiansen LB, Boyle E, et al. Accelerometer data reduction in adolescents: effects on sample retention and bias. Int J Behav Nutr Phys Act. 2013;10:140.CrossRefPubMedPubMedCentral Toftager M1, Kristensen PL, Oliver M, Duncan S, Christiansen LB, Boyle E, et al. Accelerometer data reduction in adolescents: effects on sample retention and bias. Int J Behav Nutr Phys Act. 2013;10:140.CrossRefPubMedPubMedCentral
50.
go back to reference Freedson P1, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11):S523–30.CrossRefPubMed Freedson P1, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11):S523–30.CrossRefPubMed
51.
go back to reference Esliger DW, Copeland JL, Barnes JD, Tremblay MS. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Activity Health. 2005;2(3):366–83.CrossRef Esliger DW, Copeland JL, Barnes JD, Tremblay MS. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Activity Health. 2005;2(3):366–83.CrossRef
52.
go back to reference Chinapaw MJ, de Niet M, Verloigne M, De Bourdeaudhuij I, Brug J, Altenburg TM. From sedentary time to sedentary patterns: accelerometer data reduction decisions in youth. PLoS One. 2014;9(11), e111205.CrossRefPubMedPubMedCentral Chinapaw MJ, de Niet M, Verloigne M, De Bourdeaudhuij I, Brug J, Altenburg TM. From sedentary time to sedentary patterns: accelerometer data reduction decisions in youth. PLoS One. 2014;9(11), e111205.CrossRefPubMedPubMedCentral
54.
go back to reference Ridalls T, Sivajohanathan D, Muhajarine N. Smart Cities, Healthy Kids: Seasonality and Saskatoon Kids Study. Summary and Protocols. Saskatoon: Saskatchewan Population Health and Evaluation Research Unit; 2014. Ridalls T, Sivajohanathan D, Muhajarine N. Smart Cities, Healthy Kids: Seasonality and Saskatoon Kids Study. Summary and Protocols. Saskatoon: Saskatchewan Population Health and Evaluation Research Unit; 2014.
55.
go back to reference Paul AH. Chapter 3: Climate and Weather. In: Thraves BD, Lewry ML, Dale JE, Schlichtmann H, editors. Geographic Perspective Regina. Saskatchewan: Canadian Plains Research Center; 2007. p. 37–8. 44. Paul AH. Chapter 3: Climate and Weather. In: Thraves BD, Lewry ML, Dale JE, Schlichtmann H, editors. Geographic Perspective Regina. Saskatchewan: Canadian Plains Research Center; 2007. p. 37–8. 44.
57.
go back to reference Sheridan SC. The redevelopment of a weather-type classification scheme for North America. Int J Climatol. 2002;22:51–68.CrossRef Sheridan SC. The redevelopment of a weather-type classification scheme for North America. Int J Climatol. 2002;22:51–68.CrossRef
58.
go back to reference Pope CA, Kalkstein LS. Synoptic weather modelling and estimates of the exposureresponse relationship between daily mortality and particulate air pollution. Environ Health Perspect. 1996;104:414–20.CrossRefPubMedPubMedCentral Pope CA, Kalkstein LS. Synoptic weather modelling and estimates of the exposureresponse relationship between daily mortality and particulate air pollution. Environ Health Perspect. 1996;104:414–20.CrossRefPubMedPubMedCentral
59.
go back to reference Kalkstein LS, Greene JS. An evaluation of climate/mortality relationships in large U.S. cities and possible impacts of climate change. Environ Health Perspect. 1997;105:84–93.CrossRefPubMedPubMedCentral Kalkstein LS, Greene JS. An evaluation of climate/mortality relationships in large U.S. cities and possible impacts of climate change. Environ Health Perspect. 1997;105:84–93.CrossRefPubMedPubMedCentral
60.
go back to reference Lam K-C, Cheng S. A synoptic climatological approach to forecast concentrations of sulphur dioxide and nitrogen oxides in Hong Kong. Environ Pollution. 1998;101:183–91.CrossRef Lam K-C, Cheng S. A synoptic climatological approach to forecast concentrations of sulphur dioxide and nitrogen oxides in Hong Kong. Environ Pollution. 1998;101:183–91.CrossRef
61.
go back to reference Smoyer KE, Kalkstein LS, Green JS, Ye H. The impacts of weather and air pollution on human mortality in Birmingham, Alabama and Philadelphia, Pennsylvania. Int J Clim. 2000;20:881–97.CrossRef Smoyer KE, Kalkstein LS, Green JS, Ye H. The impacts of weather and air pollution on human mortality in Birmingham, Alabama and Philadelphia, Pennsylvania. Int J Clim. 2000;20:881–97.CrossRef
62.
go back to reference Rainham DG, Smoyer-Tomic KE, Sheridan SC, Burnett RT. Synoptic weather patterns and modification of the association between air pollution and human mortality. Int J Environ Health Res Oct. 2005;15(5):347–60.CrossRef Rainham DG, Smoyer-Tomic KE, Sheridan SC, Burnett RT. Synoptic weather patterns and modification of the association between air pollution and human mortality. Int J Environ Health Res Oct. 2005;15(5):347–60.CrossRef
63.
go back to reference Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL. Spatial classification of youth physical activity patterns. Am J Prev Med. 2012;42(5):e87–96.CrossRefPubMed Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL. Spatial classification of youth physical activity patterns. Am J Prev Med. 2012;42(5):e87–96.CrossRefPubMed
64.
go back to reference Subramanian SV, Kelvyn J, Duncan C. Multilevel methods for public health research. In: Kawachi I, Berkman LF, editors. Neighborhoods and Health. New York: Oxford University Press; 2003. Subramanian SV, Kelvyn J, Duncan C. Multilevel methods for public health research. In: Kawachi I, Berkman LF, editors. Neighborhoods and Health. New York: Oxford University Press; 2003.
65.
go back to reference Diez-Roux AV. The examination of neighbourhood effects on health: conceptual and methodological issues related to the presence of multiple levels of organization. In: Kawachi I, Berkman LF, editors. Neighborhoods and Health. New York: Oxford University Press Inc; 2003. Diez-Roux AV. The examination of neighbourhood effects on health: conceptual and methodological issues related to the presence of multiple levels of organization. In: Kawachi I, Berkman LF, editors. Neighborhoods and Health. New York: Oxford University Press Inc; 2003.
66.
go back to reference Leckie G. The complexity of school and neighbourhood effects and movements of pupils on school differences in models of educational achievement. J R Stat Soc A Stat Soc. 2009;172(3):537–54.CrossRef Leckie G. The complexity of school and neighbourhood effects and movements of pupils on school differences in models of educational achievement. J R Stat Soc A Stat Soc. 2009;172(3):537–54.CrossRef
67.
go back to reference Beretvas SN, Meyers JL, Rodriguez RA. The cross-classified multilevel measurement model: an explanation and demonstration. J Appl Meas. 2005;6(3):322–41.PubMed Beretvas SN, Meyers JL, Rodriguez RA. The cross-classified multilevel measurement model: an explanation and demonstration. J Appl Meas. 2005;6(3):322–41.PubMed
68.
go back to reference Muhajarine N, Vu LTH. Neighbourhood contexts and low birth weight: social disconnection heightens single parents risks in Saskatoon. Can J Public Health. 2009;100(2):130–4.PubMed Muhajarine N, Vu LTH. Neighbourhood contexts and low birth weight: social disconnection heightens single parents risks in Saskatoon. Can J Public Health. 2009;100(2):130–4.PubMed
69.
go back to reference Puchala C, Vu LTH, Muhajarine N. Neighbourhood ethnic diversity buffers school readiness impact in ESL children. Can J Public Health. 2010;101 Suppl 3:S13–8.PubMed Puchala C, Vu LTH, Muhajarine N. Neighbourhood ethnic diversity buffers school readiness impact in ESL children. Can J Public Health. 2010;101 Suppl 3:S13–8.PubMed
70.
go back to reference Cushon J, Vu L, Janzen B, Muhajarine N. Neighborhood poverty impacts children’s physical health and well-being over time: evidence from the Early Development Instrument. Early Educ Dev. 2011;22(2):183–205.CrossRef Cushon J, Vu L, Janzen B, Muhajarine N. Neighborhood poverty impacts children’s physical health and well-being over time: evidence from the Early Development Instrument. Early Educ Dev. 2011;22(2):183–205.CrossRef
71.
go back to reference Tremblay MS, Warburton DER, Janssen I, Paterson DH, Latimer AE, Rhodes RE, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36(1):36–46.CrossRefPubMed Tremblay MS, Warburton DER, Janssen I, Paterson DH, Latimer AE, Rhodes RE, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36(1):36–46.CrossRefPubMed
72.
go back to reference Healy GN, Dunstan DW, Salmon J, Shaw JE, Zimmet PZ, Owen N. Television time and continuous metabolic risk in physically active adults. Med Sci Sports Exerc. 2008;40(4):639–45.CrossRefPubMed Healy GN, Dunstan DW, Salmon J, Shaw JE, Zimmet PZ, Owen N. Television time and continuous metabolic risk in physically active adults. Med Sci Sports Exerc. 2008;40(4):639–45.CrossRefPubMed
73.
go back to reference Sisson SB, Church TS, Martin CK, Tudor-Locke C, Smith SR, Bouchard C, et al. Profiles of sedentary behavior in children and adolescents: the US national health and nutrition examination survey, 2001–2006. Int J Pediatr Obes. 2009;4(4):353–9.CrossRefPubMedPubMedCentral Sisson SB, Church TS, Martin CK, Tudor-Locke C, Smith SR, Bouchard C, et al. Profiles of sedentary behavior in children and adolescents: the US national health and nutrition examination survey, 2001–2006. Int J Pediatr Obes. 2009;4(4):353–9.CrossRefPubMedPubMedCentral
74.
go back to reference Rey-López JP, Vicente-Rodríguez G, Biosca M, Moreno LA. Sedentary behaviour and obesity development in children and adolescents. Nutr Metab Cardiovasc Dis. 2008;18(3):242–51.CrossRefPubMed Rey-López JP, Vicente-Rodríguez G, Biosca M, Moreno LA. Sedentary behaviour and obesity development in children and adolescents. Nutr Metab Cardiovasc Dis. 2008;18(3):242–51.CrossRefPubMed
75.
go back to reference Tremblay MS, LeBlanc AG, Carson V, Choquette L, Gorber SC, Dillman C. Canadian sedentary behaviour guidelines for the early years (aged 0–4 years). Appl Physiol Nutr Metab. 2012;37(2):370–80.CrossRefPubMed Tremblay MS, LeBlanc AG, Carson V, Choquette L, Gorber SC, Dillman C. Canadian sedentary behaviour guidelines for the early years (aged 0–4 years). Appl Physiol Nutr Metab. 2012;37(2):370–80.CrossRefPubMed
76.
go back to reference Tremblay MS, Leblanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64.CrossRefPubMed Tremblay MS, Leblanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64.CrossRefPubMed
Metadata
Title
Longitudinal active living research to address physical inactivity and sedentary behaviour in children in transition from preadolescence to adolescence
Authors
Nazeem Muhajarine
Tarun R Katapally
Daniel Fuller
Kevin G Stanley
Daniel Rainham
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-1822-2

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue