Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Investigating the effect of a 3-month workplace-based pedometer-driven walking programme on health-related quality of life in meat processing workers: a feasibility study within a randomized controlled trial

Authors: Suliman Mansi, Stephan Milosavljevic, Steve Tumilty, Paul Hendrick, Chris Higgs, David G Baxter

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

In New Zealand, meat processing populations face many health problems as a result of the nature of work in meat processing industries. The primary aim of this study was to examine the feasibility of using a pedometer-based intervention to increase physical activity and improve health-related outcomes in a population of meat processing workers.

Methods

A single-blinded randomized controlled trial (RCT) was conducted. A convenience sample of meat workers (n = 58; mean age 41.0 years; range: 18-65) participated in the trial. Participants were randomly allocated into two groups. Intervention participants (n = 29) utilized a pedometer to self monitor their activity, whilst undertaking a brief intervention, and educational material. Control participants (n = 29) received educational material only. The primary outcomes of ambulatory activity, and health-related quality of life, were evaluated at baseline, immediately following the 12-week intervention and three months post-intervention.

Results

Fifty three participants completed the program (91.3% adherence). Adherence with the intervention group was high, 93% (n = 27/29), and this group increased their mean daily step count from 5993 to 9792 steps per day, while the control group steps changed from 5788 to 6551 steps per day from baseline. This increase in step counts remained significant within the intervention group p < 0.005; at three months post-intervention representing a 59% increase over baseline scores. There were significant group changes with large effect sizes for step count change (d = 1.94) and self-reported physical activity (p < 0.005; d = 2.59) at 12 weeks intervention. Further, results showed non-significant between-group differences in physical component (PCS) and mental component (MCS) scores (PCS: p = 0.44; MGD = 0.99, 95% CI, -1.6 to 3.6; ES = 0.14, and MCS: p = 0.90, MGD = 0.15; 95% CI, -2.3 to 2.6, ES = 0.022) at 12 weeks intervention.

Conclusions

This research provides important information for a larger (RCT) in the future: results demonstrated that a pedometer-driven walking intervention in combination with goal setting, and self-monitoring supported by weekly e-mails are feasible and potentially effective in increasing step count within the workplace setting over the short term.

Trial registration number

Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12613000087​752.
Literature
1.
go back to reference Caspersen CJ, Powell KE, Christenson G. Physical activity, exercise and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.PubMedPubMedCentral Caspersen CJ, Powell KE, Christenson G. Physical activity, exercise and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.PubMedPubMedCentral
2.
go back to reference Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: A systematic review. J Hypertens. 2012;30(7):1277–88.CrossRefPubMed Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: A systematic review. J Hypertens. 2012;30(7):1277–88.CrossRefPubMed
3.
go back to reference Li J, Siegrist J. Physical activity and risk of cardiovascular disease-a meta-analysis of prospective cohort studies. Int J Environ Res Public Health. 2012;9(2):391–407.CrossRefPubMedPubMedCentral Li J, Siegrist J. Physical activity and risk of cardiovascular disease-a meta-analysis of prospective cohort studies. Int J Environ Res Public Health. 2012;9(2):391–407.CrossRefPubMedPubMedCentral
4.
go back to reference Katzmarzyk PT, Lear SA. Physical activity for obese individuals: A systematic review of effects on chronic disease risk factors. Obes Rev. 2012;13(2):95–105.CrossRefPubMed Katzmarzyk PT, Lear SA. Physical activity for obese individuals: A systematic review of effects on chronic disease risk factors. Obes Rev. 2012;13(2):95–105.CrossRefPubMed
6.
go back to reference Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.CrossRefPubMedPubMedCentral Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.CrossRefPubMedPubMedCentral
9.
go back to reference Puig-Ribera A, McKenna J, Gilson N, Brown WJ. Change in work day step counts, wellbeing and job performance in Catalan university employees: a randomised controlled trial. Promotion Educ. 2008;15(4):11–6.CrossRef Puig-Ribera A, McKenna J, Gilson N, Brown WJ. Change in work day step counts, wellbeing and job performance in Catalan university employees: a randomised controlled trial. Promotion Educ. 2008;15(4):11–6.CrossRef
10.
go back to reference Marshall A. Challenges and opportunities for promoting physical activity in the workplace. J Sci Med Sport. 2004;7(1):60–6.CrossRefPubMed Marshall A. Challenges and opportunities for promoting physical activity in the workplace. J Sci Med Sport. 2004;7(1):60–6.CrossRefPubMed
11.
go back to reference Tudor-Locke C, Leonardi C, Johnson WD, Katzmarzyk PT. Time spent in physical activity and sedentary behaviors on the working day: The American Time Use Survey. J Occup Environ Med. 2011;53(12):1382–7.CrossRefPubMed Tudor-Locke C, Leonardi C, Johnson WD, Katzmarzyk PT. Time spent in physical activity and sedentary behaviors on the working day: The American Time Use Survey. J Occup Environ Med. 2011;53(12):1382–7.CrossRefPubMed
12.
go back to reference Schofield G, Badlands H, Oliver M. Objectively-measured physical activity in New Zealand workers. J Sci Med Sport. 2005;8(2):143–51.CrossRefPubMed Schofield G, Badlands H, Oliver M. Objectively-measured physical activity in New Zealand workers. J Sci Med Sport. 2005;8(2):143–51.CrossRefPubMed
14.
go back to reference Ivanov Z, Ivanov M. Obesity, hypertension and the lumbar syndrome in workers at the Neoplanta Meat Plant in Novi Sad. [Gojaznost, hipertenzija i lumbalni sindrom radnika ad “Neoplanta” industrija mesa Novi Sad]. Med Pregl. 2000;53(5-6):297–300.PubMed Ivanov Z, Ivanov M. Obesity, hypertension and the lumbar syndrome in workers at the Neoplanta Meat Plant in Novi Sad. [Gojaznost, hipertenzija i lumbalni sindrom radnika ad “Neoplanta” industrija mesa Novi Sad]. Med Pregl. 2000;53(5-6):297–300.PubMed
15.
go back to reference McLean D, Cheng S, T Mannetje A, Woodward A, Pearce N. Mortality and cancer incidence in New Zealand meat workers. Occup Environ Med. 2004;61(6):541–7.CrossRefPubMedPubMedCentral McLean D, Cheng S, T Mannetje A, Woodward A, Pearce N. Mortality and cancer incidence in New Zealand meat workers. Occup Environ Med. 2004;61(6):541–7.CrossRefPubMedPubMedCentral
16.
go back to reference Dishman RK, Oldenburg B, O’Neal H, Shephard RJ. Worksite physical activity interventions. Am J Prev Med. 1998;15(4):344–61.CrossRefPubMed Dishman RK, Oldenburg B, O’Neal H, Shephard RJ. Worksite physical activity interventions. Am J Prev Med. 1998;15(4):344–61.CrossRefPubMed
17.
go back to reference Christie J, O’Halloran P, Caan W, Cardwell CR, Young T, Rao M. Workplace‐based organisational interventions to prevent and control obesity by improving dietary intake and/or increasing physical activity. Cochrane Database Syst Rev. 2010; Issue 6. [doi:10.1002/14651858.CD008546]. Christie J, O’Halloran P, Caan W, Cardwell CR, Young T, Rao M. Workplace‐based organisational interventions to prevent and control obesity by improving dietary intake and/or increasing physical activity. Cochrane Database Syst Rev. 2010; Issue 6. [doi:10.1002/14651858.CD008546].
18.
go back to reference Malik SH, Blake H, Suggs LS. A systematic review of workplace health promotion interventions for increasing physical activity. Br J Health Psychol. 2013;19(1):149–80.CrossRefPubMed Malik SH, Blake H, Suggs LS. A systematic review of workplace health promotion interventions for increasing physical activity. Br J Health Psychol. 2013;19(1):149–80.CrossRefPubMed
19.
go back to reference Odeen M, Magnussen LH, Maeland S, Larun L, Eriksen HR, Tveito TH. Systematic review of active workplace interventions to reduce sickness absence. Occup Med (Lond). 2013;63(1):7–16.CrossRef Odeen M, Magnussen LH, Maeland S, Larun L, Eriksen HR, Tveito TH. Systematic review of active workplace interventions to reduce sickness absence. Occup Med (Lond). 2013;63(1):7–16.CrossRef
20.
go back to reference Dugdill L, Brettle A, Hulme C, McCluskey S, Long A. Workplace physical activity interventions: a systematic review. Int J Workplace Health Manag. 2008;1(1):20–40.CrossRef Dugdill L, Brettle A, Hulme C, McCluskey S, Long A. Workplace physical activity interventions: a systematic review. Int J Workplace Health Manag. 2008;1(1):20–40.CrossRef
21.
go back to reference Freak-Poli RL, Cumpston M, Peeters A, Clemes SA. Workplace pedometer interventions for increasing physical activity. Cochrane Database Syst Rev. 2013;30:4. Freak-Poli RL, Cumpston M, Peeters A, Clemes SA. Workplace pedometer interventions for increasing physical activity. Cochrane Database Syst Rev. 2013;30:4.
22.
go back to reference Proper KI, Koning M, Van der Beek AJ, Hildebrandt VH, Bosscher RJ, Van Mechelen W. The effectiveness of worksite physical activity programs on physical activity, physical fitness, and health. Clin J Sport Med. 2003;13(2):106–17.CrossRefPubMed Proper KI, Koning M, Van der Beek AJ, Hildebrandt VH, Bosscher RJ, Van Mechelen W. The effectiveness of worksite physical activity programs on physical activity, physical fitness, and health. Clin J Sport Med. 2003;13(2):106–17.CrossRefPubMed
23.
go back to reference To QG, Chen TTL, Magnussen CG, To KG. Workplace physical activity interventions: A systematic review. Am J Health Promot. 2013;27(6):113–23.CrossRef To QG, Chen TTL, Magnussen CG, To KG. Workplace physical activity interventions: A systematic review. Am J Health Promot. 2013;27(6):113–23.CrossRef
24.
go back to reference Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: A systematic review. J Am Med Assoc. 2007;298(19):2296–304.CrossRef Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: A systematic review. J Am Med Assoc. 2007;298(19):2296–304.CrossRef
25.
go back to reference Houle J, Doyon O, Vadeboncoeur N, Turbide G, Diaz A, Poirier P. Effectiveness of a pedometer-based program using a socio-cognitive intervention on physical activity and quality of life in a setting of cardiac rehabilitation. Can J Cardiol. 2012;28(1):27–32.CrossRefPubMed Houle J, Doyon O, Vadeboncoeur N, Turbide G, Diaz A, Poirier P. Effectiveness of a pedometer-based program using a socio-cognitive intervention on physical activity and quality of life in a setting of cardiac rehabilitation. Can J Cardiol. 2012;28(1):27–32.CrossRefPubMed
26.
go back to reference Ashford S, Edmunds J, French DP. What is the best way to change self‐efficacy to promote lifestyle and recreational physical activity? A systematic review with meta‐analysis. Br J Health Psychol. 2010;15(2):265–88.CrossRefPubMed Ashford S, Edmunds J, French DP. What is the best way to change self‐efficacy to promote lifestyle and recreational physical activity? A systematic review with meta‐analysis. Br J Health Psychol. 2010;15(2):265–88.CrossRefPubMed
27.
go back to reference Baker G, Mutrie N, Lowry R. Using pedometers as motivational tools: Are goals set in steps more effective than goals set in minutes for increasing walking? Int J Health Promot Educ. 2008;46(1):21–6.CrossRef Baker G, Mutrie N, Lowry R. Using pedometers as motivational tools: Are goals set in steps more effective than goals set in minutes for increasing walking? Int J Health Promot Educ. 2008;46(1):21–6.CrossRef
28.
go back to reference Freak-Poli R, Wolfe R, Backholer K, de Courten M, Peeters A. Impact of a pedometer-based workplace health program on cardiovascular and diabetes risk profile. Prev Med. 2011;53(3):162–71.CrossRefPubMed Freak-Poli R, Wolfe R, Backholer K, de Courten M, Peeters A. Impact of a pedometer-based workplace health program on cardiovascular and diabetes risk profile. Prev Med. 2011;53(3):162–71.CrossRefPubMed
29.
go back to reference Haines DJ, Davis L, Rancour P, Robinson M, Neel-Wilson T, Wagner S. A pilot intervention to promote walking and wellness and to improve the health of college faculty and staff. J Am Coll Heal. 2007;55(4):219–25.CrossRef Haines DJ, Davis L, Rancour P, Robinson M, Neel-Wilson T, Wagner S. A pilot intervention to promote walking and wellness and to improve the health of college faculty and staff. J Am Coll Heal. 2007;55(4):219–25.CrossRef
30.
go back to reference Faghri PD, Omokaro C, Parker C, Nichols E, Gustavesen S, Blozie E. E-technology and pedometer walking program to increase physical activity at work. J Prim Prev. 2008;29(1):73–91.CrossRefPubMed Faghri PD, Omokaro C, Parker C, Nichols E, Gustavesen S, Blozie E. E-technology and pedometer walking program to increase physical activity at work. J Prim Prev. 2008;29(1):73–91.CrossRefPubMed
31.
go back to reference Croteau KA. Strategies used to increase lifestyle physical activity in a pedometer-based intervention. J Allied Health. 2004;33(4):278–81.PubMed Croteau KA. Strategies used to increase lifestyle physical activity in a pedometer-based intervention. J Allied Health. 2004;33(4):278–81.PubMed
32.
go back to reference Mansi S, Milosavljevic S, Tumilty S, Hendrick P, Baxter GD. Use of pedometer-driven walking to promote physical activity and improve health-related quality of life among meat processing workers: a feasibility trial. Health Qual Life Outcomes. 2013;11(1):185.CrossRefPubMedPubMedCentral Mansi S, Milosavljevic S, Tumilty S, Hendrick P, Baxter GD. Use of pedometer-driven walking to promote physical activity and improve health-related quality of life among meat processing workers: a feasibility trial. Health Qual Life Outcomes. 2013;11(1):185.CrossRefPubMedPubMedCentral
33.
go back to reference Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. Consort 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10(1):28–55.CrossRefPubMed Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. Consort 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10(1):28–55.CrossRefPubMed
34.
go back to reference Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med. 2005;40(3):293–8.CrossRefPubMed Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med. 2005;40(3):293–8.CrossRefPubMed
35.
go back to reference Tudor-Locke C, Ham SA, Macera CA, Ainsworth BE, Kirtland KA, Reis JP, et al. Descriptive epidemiology of pedometer-determined physical activity. Med Sci Sports Exerc. 2004;36(9):1567–73.CrossRefPubMed Tudor-Locke C, Ham SA, Macera CA, Ainsworth BE, Kirtland KA, Reis JP, et al. Descriptive epidemiology of pedometer-determined physical activity. Med Sci Sports Exerc. 2004;36(9):1567–73.CrossRefPubMed
36.
go back to reference Berlin JE, Storti KL, Brach JS. Using activity monitors to measure physical activity in free-living conditions. Phys Ther. 2006;86(8):1137–45.PubMed Berlin JE, Storti KL, Brach JS. Using activity monitors to measure physical activity in free-living conditions. Phys Ther. 2006;86(8):1137–45.PubMed
37.
go back to reference Clemes SA, Griffiths PL. How Many Days of Pedometer Monitoring Predict Monthly Ambulatory Activity in Adults? Med Sci Sports Exerc. 2008;40(9):1589–95.CrossRefPubMed Clemes SA, Griffiths PL. How Many Days of Pedometer Monitoring Predict Monthly Ambulatory Activity in Adults? Med Sci Sports Exerc. 2008;40(9):1589–95.CrossRefPubMed
38.
go back to reference Kubota A, Nagata J, Sugiyama M, Ishiduka K, Unno Y. How many days of pedometer monitoring predict weekly physical activity in Japanese adults? [Nippon kōshū eisei zasshi]. Jpn J Public Health. 2009;56(11):805–10. Kubota A, Nagata J, Sugiyama M, Ishiduka K, Unno Y. How many days of pedometer monitoring predict weekly physical activity in Japanese adults? [Nippon kōshū eisei zasshi]. Jpn J Public Health. 2009;56(11):805–10.
39.
go back to reference McDonough S, Tully M, O’Connor S, Boyd A, Kerr D, O’Neill S, et al. The Back 2 Activity Trial: education and advice versus education and advice plus a structured walking programme for chronic low back pain. BMC Musculoskelet Disord. 2010;11:R163.CrossRef McDonough S, Tully M, O’Connor S, Boyd A, Kerr D, O’Neill S, et al. The Back 2 Activity Trial: education and advice versus education and advice plus a structured walking programme for chronic low back pain. BMC Musculoskelet Disord. 2010;11:R163.CrossRef
40.
go back to reference Baumeister RF, Gailliot M, DeWall CN, Oaten M. Self-regulation and personality: how interventions increase regulatory success, and how depletion moderates the effects of traits on behavior. J Pers. 2006;74(6):1773–801.CrossRefPubMed Baumeister RF, Gailliot M, DeWall CN, Oaten M. Self-regulation and personality: how interventions increase regulatory success, and how depletion moderates the effects of traits on behavior. J Pers. 2006;74(6):1773–801.CrossRefPubMed
41.
go back to reference Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports. 2007;39(8):1423–34. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports. 2007;39(8):1423–34.
42.
go back to reference Tudor-Locke C, Bassett Jr DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.CrossRefPubMed Tudor-Locke C, Bassett Jr DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.CrossRefPubMed
43.
go back to reference Vincent SD, Sidman CL. Determining measurement error in digital pedometers. Meas Phys Educ Exerc Sci. 2003;7(1):19–24.CrossRef Vincent SD, Sidman CL. Determining measurement error in digital pedometers. Meas Phys Educ Exerc Sci. 2003;7(1):19–24.CrossRef
44.
go back to reference Schneider PL, Crouter SE, Bassett Jr DR. Pedometer Measures of Free-Living Physical Activity: Comparison of 13 Models. Med Sci Sports. 2004;36(2):331–5. Schneider PL, Crouter SE, Bassett Jr DR. Pedometer Measures of Free-Living Physical Activity: Comparison of 13 Models. Med Sci Sports. 2004;36(2):331–5.
45.
go back to reference Grant PM, Dall PM, Mitchell SL, Granat MH. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults. J Aging Phys Act. 2008;16(2):201–14.CrossRefPubMed Grant PM, Dall PM, Mitchell SL, Granat MH. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults. J Aging Phys Act. 2008;16(2):201–14.CrossRefPubMed
46.
go back to reference Le Masurier GC, Tudor-locke C. Comparison of pedometer and accelerometer accuracy under controlled conditions. Med Sci Sports. 2003;35(5):867–71. Le Masurier GC, Tudor-locke C. Comparison of pedometer and accelerometer accuracy under controlled conditions. Med Sci Sports. 2003;35(5):867–71.
47.
go back to reference Kang M, Bassett DR, Barreira TV, Tudor-Locke C, Ainsworth BE. Measurement effects of seasonal and monthly variability on pedometer-determined data. J Phys Act Health. 2012;9(3):336–43.CrossRefPubMed Kang M, Bassett DR, Barreira TV, Tudor-Locke C, Ainsworth BE. Measurement effects of seasonal and monthly variability on pedometer-determined data. J Phys Act Health. 2012;9(3):336–43.CrossRefPubMed
48.
go back to reference Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports. 2003;35(8):1381–95. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports. 2003;35(8):1381–95.
49.
go back to reference Lee P, Macfarlane D, Lam TH, Stewart S. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int J Behav Nutr Phys Act. 2011;8(1):1–11.CrossRef Lee P, Macfarlane D, Lam TH, Stewart S. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int J Behav Nutr Phys Act. 2011;8(1):1–11.CrossRef
50.
go back to reference Papathanasiou G, Georgoudis G, Papandreou M, Spyropoulos P, Georgakopoulos D, Kalfakakou V, et al. Reliability measures of the short International Physical Activity Questionnaire (IPAQ) in Greek young adults. Hell J Cardiol. 2009;50(4):283–94. Papathanasiou G, Georgoudis G, Papandreou M, Spyropoulos P, Georgakopoulos D, Kalfakakou V, et al. Reliability measures of the short International Physical Activity Questionnaire (IPAQ) in Greek young adults. Hell J Cardiol. 2009;50(4):283–94.
51.
go back to reference Van Der Ploeg HP, Tudor-Locke C, Marshall AL, Craig C, Hagströmer M, Sjöström M, et al. Reliability and validity of the international physical activity questionnaire for assessing walking. Res Q Exerc Sport. 2010;81(1):97–101.CrossRefPubMed Van Der Ploeg HP, Tudor-Locke C, Marshall AL, Craig C, Hagströmer M, Sjöström M, et al. Reliability and validity of the international physical activity questionnaire for assessing walking. Res Q Exerc Sport. 2010;81(1):97–101.CrossRefPubMed
52.
go back to reference Hasegawa T, Suzukamo Y, Akizawa T, Fukuhara S. Validation of the Japanese SF-36 v2 acute form in patients with chronic kidney disease. Jpn J Nephrol. 2008;50(1):42–50. Hasegawa T, Suzukamo Y, Akizawa T, Fukuhara S. Validation of the Japanese SF-36 v2 acute form in patients with chronic kidney disease. Jpn J Nephrol. 2008;50(1):42–50.
53.
go back to reference McHorney CA, Ware Jr JE, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.CrossRefPubMed McHorney CA, Ware Jr JE, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.CrossRefPubMed
55.
go back to reference McHorney CA, Ware Jr JE, Rogers W, Raczek AE, Lu JF. The validity and relative precision of MOS short- and long-form health status scales and Dartmouth COOP charts. Results from the Medical Outcomes Study. Med Care. 1992;30(5 Suppl):253–65. McHorney CA, Ware Jr JE, Rogers W, Raczek AE, Lu JF. The validity and relative precision of MOS short- and long-form health status scales and Dartmouth COOP charts. Results from the Medical Outcomes Study. Med Care. 1992;30(5 Suppl):253–65.
56.
go back to reference Scott KM, Tobias MI, Sarfati D, Haslett SJ. SF-36 health survey reliability, validity and norms for New Zealand. Aust N Z J Public Health. 1999;23(4):401–6.CrossRefPubMed Scott KM, Tobias MI, Sarfati D, Haslett SJ. SF-36 health survey reliability, validity and norms for New Zealand. Aust N Z J Public Health. 1999;23(4):401–6.CrossRefPubMed
57.
go back to reference Hill K, Wickerson LM, Woon LJ, Abady AH, Overend TJ, Goldstein RS, et al. The 6-min walk test: Responses in healthy Canadians aged 45 to 85 years. Appl Physiol Nutr Metab. 2011;36(5):643–9.CrossRefPubMed Hill K, Wickerson LM, Woon LJ, Abady AH, Overend TJ, Goldstein RS, et al. The 6-min walk test: Responses in healthy Canadians aged 45 to 85 years. Appl Physiol Nutr Metab. 2011;36(5):643–9.CrossRefPubMed
58.
go back to reference Soares MR, Pereira CAC. Six-minute walk test: Reference values for healthy adults in Brazil. Teste de caminhada de seis minutes valores de referência para adultos saudáveis no Brasil. 2011;37(5):576–83. Soares MR, Pereira CAC. Six-minute walk test: Reference values for healthy adults in Brazil. Teste de caminhada de seis minutes valores de referência para adultos saudáveis no Brasil. 2011;37(5):576–83.
59.
go back to reference American Thoracic Society. Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;1(166):111–7. American Thoracic Society. Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;1(166):111–7.
60.
go back to reference Alameri HF, Sanai FM, Al Dukhayil M, Azzam NA, Al-Swat KA, Hersi AS, et al. Six minute walk test to assess functional capacity in chronic liver disease patients. World J Gastroenterol. 2007;13(29):3996–4001.CrossRefPubMedPubMedCentral Alameri HF, Sanai FM, Al Dukhayil M, Azzam NA, Al-Swat KA, Hersi AS, et al. Six minute walk test to assess functional capacity in chronic liver disease patients. World J Gastroenterol. 2007;13(29):3996–4001.CrossRefPubMedPubMedCentral
61.
go back to reference Ulbricht L, Neves EB, Ripka WL, Romaneli EFR. Comparison between body fat measurements obtained by portable ultrasound and caliper in young adults. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. San Diego, CA: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2012. p. 1952–5.CrossRef Ulbricht L, Neves EB, Ripka WL, Romaneli EFR. Comparison between body fat measurements obtained by portable ultrasound and caliper in young adults. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. San Diego, CA: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2012. p. 1952–5.CrossRef
62.
go back to reference Goacher PJ, Lambert R, Moffatt PG. Can weight-related health risk be more accurately assessed by BMI, or by gender specific calculations of Percentage Body Fatness? Med Hypotheses. 2012;79(5):656–62.CrossRefPubMed Goacher PJ, Lambert R, Moffatt PG. Can weight-related health risk be more accurately assessed by BMI, or by gender specific calculations of Percentage Body Fatness? Med Hypotheses. 2012;79(5):656–62.CrossRefPubMed
63.
go back to reference Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21(3):681–9.CrossRefPubMed Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21(3):681–9.CrossRefPubMed
64.
go back to reference Coleman A, Freeman P, Steel S, Shennan A. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the European Society of Hypertension international protocol. Blood Press Monit. 2005;10(3):165–8.CrossRefPubMed Coleman A, Freeman P, Steel S, Shennan A. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the European Society of Hypertension international protocol. Blood Press Monit. 2005;10(3):165–8.CrossRefPubMed
65.
go back to reference Morgan PJ, Lubans DR, Collins CE, Warren JM, Callister R. The SHED-IT randomized controlled trial: Evaluation of an internet-based weight-loss program for men. Obesity. 2009;17(11):2025–32.CrossRefPubMed Morgan PJ, Lubans DR, Collins CE, Warren JM, Callister R. The SHED-IT randomized controlled trial: Evaluation of an internet-based weight-loss program for men. Obesity. 2009;17(11):2025–32.CrossRefPubMed
66.
go back to reference Cohen J. Statistical power analysis for the behavioral sciencies; 2nd edition. United States of American, NJ: Lawrence Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioral sciencies; 2nd edition. United States of American, NJ: Lawrence Erlbaum Associates; 1988.
67.
go back to reference Bubbar VK, Kreder HJ. The intention-to-treat principle: a primer for the orthopaedic surgeon. J Bone Joint Surg. 2006;88(9):2097–9.PubMed Bubbar VK, Kreder HJ. The intention-to-treat principle: a primer for the orthopaedic surgeon. J Bone Joint Surg. 2006;88(9):2097–9.PubMed
68.
go back to reference Gilson N, McKenna J, Cooke C, Brown W. Walking towards health in a university community: a feasibility study. Prev Med. 2007;44(2):167–9.CrossRefPubMed Gilson N, McKenna J, Cooke C, Brown W. Walking towards health in a university community: a feasibility study. Prev Med. 2007;44(2):167–9.CrossRefPubMed
69.
go back to reference Thøgersen-Ntoumani C, Loughren E, Duda J, Fox K. Step by Step: the feasibility of a 16-Week Workplace Lunchtime Walking Intervention for Physically Inactive Employees. J Phys Act Health. 2013. [Epub ahead of print]. Thøgersen-Ntoumani C, Loughren E, Duda J, Fox K. Step by Step: the feasibility of a 16-Week Workplace Lunchtime Walking Intervention for Physically Inactive Employees. J Phys Act Health. 2013. [Epub ahead of print].
70.
go back to reference Dishman RK, DeJoy DM, Wilson MG, Vandenberg RJ. Move to improve: A randomized workplace trial to increase physical activity. Am J Prev Med. 2009;36(2):133–41.CrossRefPubMed Dishman RK, DeJoy DM, Wilson MG, Vandenberg RJ. Move to improve: A randomized workplace trial to increase physical activity. Am J Prev Med. 2009;36(2):133–41.CrossRefPubMed
71.
go back to reference Maruyama C, Kimura M, Okumura H, Hayashi K, Arao T. Effect of a worksite-based intervention program on metabolic parameters in middle-aged male white-collar workers: a randomized controlled trial. Prev Med. 2010;51(1):11–7.CrossRefPubMed Maruyama C, Kimura M, Okumura H, Hayashi K, Arao T. Effect of a worksite-based intervention program on metabolic parameters in middle-aged male white-collar workers: a randomized controlled trial. Prev Med. 2010;51(1):11–7.CrossRefPubMed
72.
go back to reference Aittasalo M, Rinne M, Pasanen M, Kukkonen-Harjula K, Vasankari T. Promoting walking among office employees―evaluation of a randomized controlled intervention with pedometers and e-mail messages. BMC Public Health. 2012;12(1):403.CrossRefPubMedPubMedCentral Aittasalo M, Rinne M, Pasanen M, Kukkonen-Harjula K, Vasankari T. Promoting walking among office employees―evaluation of a randomized controlled intervention with pedometers and e-mail messages. BMC Public Health. 2012;12(1):403.CrossRefPubMedPubMedCentral
73.
go back to reference Shaw R, Fenwick E, Baker G, McAdam C, Fitzsimons C, Mutrie N. ‘Pedometers cost buttons’: the feasibility of implementing a pedometer based walking programme within the community. BMC Public Health. 2011;11(1):200.CrossRefPubMedPubMedCentral Shaw R, Fenwick E, Baker G, McAdam C, Fitzsimons C, Mutrie N. ‘Pedometers cost buttons’: the feasibility of implementing a pedometer based walking programme within the community. BMC Public Health. 2011;11(1):200.CrossRefPubMedPubMedCentral
74.
go back to reference Zoellner J, Powers A, Avis-Williams A, Ndirangu M, Strickland E, Yadrick K. Compliance and acceptability of maintaining a 6-month pedometer diary in a rural, African American community-based walking intervention. J Phys Act Health. 2009;6(4):475–82.CrossRefPubMed Zoellner J, Powers A, Avis-Williams A, Ndirangu M, Strickland E, Yadrick K. Compliance and acceptability of maintaining a 6-month pedometer diary in a rural, African American community-based walking intervention. J Phys Act Health. 2009;6(4):475–82.CrossRefPubMed
75.
go back to reference Allen K, Morey MC. Physical activity and adherence. In: Bosworth H, editor. Improving Patient Treatment Adherence; A Clinician’s Guide. New York: Springer; 2010. p. 38. Allen K, Morey MC. Physical activity and adherence. In: Bosworth H, editor. Improving Patient Treatment Adherence; A Clinician’s Guide. New York: Springer; 2010. p. 38.
76.
go back to reference Lauzon N, Chan CB, Myers AM, Tudor-Locke C. Participant experiences in a workplace pedometer-based physical activity program. J Phys Act Health. 2008;5(5):675–87.CrossRefPubMed Lauzon N, Chan CB, Myers AM, Tudor-Locke C. Participant experiences in a workplace pedometer-based physical activity program. J Phys Act Health. 2008;5(5):675–87.CrossRefPubMed
77.
go back to reference Chan CB, Ryan DA, Tudor-Locke C. Health benefits of a pedometer-based physical activity intervention in sedentary workers. Prev Med. 2004;39(6):1215–22.CrossRefPubMed Chan CB, Ryan DA, Tudor-Locke C. Health benefits of a pedometer-based physical activity intervention in sedentary workers. Prev Med. 2004;39(6):1215–22.CrossRefPubMed
78.
go back to reference Thomas L, Williams M. Promoting physical activity in the workplace: using pedometers to increase daily activity levels. Health Promot J Austr. 2006;17(2):97–102.PubMed Thomas L, Williams M. Promoting physical activity in the workplace: using pedometers to increase daily activity levels. Health Promot J Austr. 2006;17(2):97–102.PubMed
79.
go back to reference Ogilvie D, Foster C, Rothnie H, Cavill N, Hamilton V, Fitzsimons C, et al. Interventions to promote walking: Systematic review. BMJ. 2007;334(7605):1204–7.CrossRefPubMedPubMedCentral Ogilvie D, Foster C, Rothnie H, Cavill N, Hamilton V, Fitzsimons C, et al. Interventions to promote walking: Systematic review. BMJ. 2007;334(7605):1204–7.CrossRefPubMedPubMedCentral
80.
go back to reference Rooney B, Smalley K, Larson J, Havens S. Is knowing enough? Increasing physical activity by wearing a pedometer. Wis Med J. 2003;102(4):31–6. Rooney B, Smalley K, Larson J, Havens S. Is knowing enough? Increasing physical activity by wearing a pedometer. Wis Med J. 2003;102(4):31–6.
81.
go back to reference Shaw G, Alfonso H, Howat P, Corben K. Use of pedometers in a workplace physical activity program. Australasian J Podiatr Med. 2007;41:23–8. Shaw G, Alfonso H, Howat P, Corben K. Use of pedometers in a workplace physical activity program. Australasian J Podiatr Med. 2007;41:23–8.
82.
go back to reference LeCheminant JD, Smith JD, Covington NK, Hardin-Renschen T, Heden T. Pedometer use in university freshmen: a randomized controlled pilot study. Am J Health Behav. 2011;35(6):777–84.CrossRefPubMed LeCheminant JD, Smith JD, Covington NK, Hardin-Renschen T, Heden T. Pedometer use in university freshmen: a randomized controlled pilot study. Am J Health Behav. 2011;35(6):777–84.CrossRefPubMed
83.
go back to reference De Cocker KA, De Bourdeaudhuij IM, Cardon GM. The effect of a multi-strategy workplace physical activity intervention promoting pedometer use and step count increase. Health Educ Res. 2010;25(4):608–19.CrossRefPubMed De Cocker KA, De Bourdeaudhuij IM, Cardon GM. The effect of a multi-strategy workplace physical activity intervention promoting pedometer use and step count increase. Health Educ Res. 2010;25(4):608–19.CrossRefPubMed
84.
go back to reference Tudor-Locke C, Craig CL, Brown WJ, Clemes SA, De Cocker K, Giles-Corti B, et al. How many steps/day are enough? for adults. Int J Behav Nutr Phys Act. 2011;8(8):79.CrossRefPubMedPubMedCentral Tudor-Locke C, Craig CL, Brown WJ, Clemes SA, De Cocker K, Giles-Corti B, et al. How many steps/day are enough? for adults. Int J Behav Nutr Phys Act. 2011;8(8):79.CrossRefPubMedPubMedCentral
85.
go back to reference De Cocker KA, De Bourdeaudhuij IM, Brown WJ, Cardon GM. Effects of “10,000 steps Ghent”: a whole-community intervention. Am J Prev Med. 2007;33(6):455–63.CrossRefPubMed De Cocker KA, De Bourdeaudhuij IM, Brown WJ, Cardon GM. Effects of “10,000 steps Ghent”: a whole-community intervention. Am J Prev Med. 2007;33(6):455–63.CrossRefPubMed
86.
go back to reference Chan CB, Tudor-Locke C. Real-world evaluation of a community-based pedometer intervention. J Phys Act Health. 2008;5(5):648.CrossRefPubMed Chan CB, Tudor-Locke C. Real-world evaluation of a community-based pedometer intervention. J Phys Act Health. 2008;5(5):648.CrossRefPubMed
87.
go back to reference Harding J, Freak-Poli RLA, Backholer K, Peeters A. Change in health-related quality of life amongst participants in a 4-month pedometer-based workplace health program. J Phys Act Health. 2013;10(4):533–43.CrossRefPubMed Harding J, Freak-Poli RLA, Backholer K, Peeters A. Change in health-related quality of life amongst participants in a 4-month pedometer-based workplace health program. J Phys Act Health. 2013;10(4):533–43.CrossRefPubMed
88.
go back to reference Bize R, Johnson JA, Plotnikoff RC. Physical activity level and health-related quality of life in the general adult population: A systematic review. Prev Med. 2007;45(6):401–15.CrossRefPubMed Bize R, Johnson JA, Plotnikoff RC. Physical activity level and health-related quality of life in the general adult population: A systematic review. Prev Med. 2007;45(6):401–15.CrossRefPubMed
89.
go back to reference Fritschi JO, Brown WJ, Laukkanen R, van Uffelen JGZ. The effects of pole walking on health in adults: a systematic review. Scand J Med Sci Sports. 2012;22(5):70–8.CrossRef Fritschi JO, Brown WJ, Laukkanen R, van Uffelen JGZ. The effects of pole walking on health in adults: a systematic review. Scand J Med Sci Sports. 2012;22(5):70–8.CrossRef
90.
go back to reference Pucci GCMF, Rech CR, Fermino RC, Reis RS. Association between physical activity and quality of life in adults. Rev Saude Publica. 2012;46(1):166–79.CrossRefPubMed Pucci GCMF, Rech CR, Fermino RC, Reis RS. Association between physical activity and quality of life in adults. Rev Saude Publica. 2012;46(1):166–79.CrossRefPubMed
91.
92.
93.
go back to reference Morgan PJ, Collins CE, Plotnikoff RC, Cook AT, Berthon B, Mitchell S, et al. Efficacy of a workplace-based weight loss program for overweight male shift workers: The Workplace POWER (Preventing Obesity Without Eating like a Rabbit) randomized controlled trial. Prev Med. 2011;52(5):317–25.CrossRefPubMed Morgan PJ, Collins CE, Plotnikoff RC, Cook AT, Berthon B, Mitchell S, et al. Efficacy of a workplace-based weight loss program for overweight male shift workers: The Workplace POWER (Preventing Obesity Without Eating like a Rabbit) randomized controlled trial. Prev Med. 2011;52(5):317–25.CrossRefPubMed
Metadata
Title
Investigating the effect of a 3-month workplace-based pedometer-driven walking programme on health-related quality of life in meat processing workers: a feasibility study within a randomized controlled trial
Authors
Suliman Mansi
Stephan Milosavljevic
Steve Tumilty
Paul Hendrick
Chris Higgs
David G Baxter
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-1736-z

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue