Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Weekday and weekend patterns of objectively measured sitting, standing, and stepping in a sample of office-based workers: the active buildings study

Authors: Lee Smith, Mark Hamer, Marcella Ucci, Alexi Marmot, Benjamin Gardner, Alexia Sawyer, Jane Wardle, Abigail Fisher

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

There is a growing body of research into the total amount and patterns of sitting, standing and stepping in office-based workers and few studies using objectively measured sitting and standing. Understanding these patterns may identify daily times opportune for interventions to displace sitting with activity.

Methods

A sample of office-based workers (n = 164) residing in England were fitted with thigh-worn ActivPal accelerometers and devices were worn 24 hours a day for five consecutive days, always including Saturday and Sunday and during bathing and sleeping. Daily amounts and patterns of time spent sitting, standing, stepping and step counts and frequency of sit/stand transitions, recorded by the ActivPal accelerometer, were reported.

Results

Total sitting/standing time was similar on weekdays (10.6/4.1 hrs) and weekends (10.6/4.3 hrs). Total step count was also similar over weekdays (9682 ± 3872) and weekends (9518 ± 4615). The highest physical activity levels during weekdays were accrued at 0700 to 0900, 1200 to 1400, and 1700 to 1900; and during the weekend at 1000 to 1700. During the weekday the greatest amount of sitting was accrued at 0900 to 1200, 1400 to 1700, and 2000 to 2300, and on the weekend between 1800 and 2300. During the weekday the greatest amount of standing was accrued between 0700 and 1000 and 1700 and 2100, and on the weekend between 1000 and 1800. On the weekday the highest number of sit/stand transitions occurred between 0800 to 0900 and remained consistently high until 1800. On the weekend, the highest number occurred between 1000 to 1400 and 1900 to 2000.

Conclusion

Office based-workers demonstrate high levels of sitting during both the working week and weekend. Interventions that target the working day and the evenings (weekday and weekend) to displace sitting with activity may offer most promise for reducing population levels of sedentary behaviour and increasing physical activity levels, in office-based workers residing in England.
Literature
1.
go back to reference Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.CrossRefPubMedPubMedCentral Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.CrossRefPubMedPubMedCentral
2.
go back to reference Colley RC, Garriguet D, Janssen I, Craig CL, Clark J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from 2007 to 2009 Canadian Health Measures survey. Health Rep. 2011;22:15–22.PubMed Colley RC, Garriguet D, Janssen I, Craig CL, Clark J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from 2007 to 2009 Canadian Health Measures survey. Health Rep. 2011;22:15–22.PubMed
3.
go back to reference Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380:294–305.CrossRefPubMed Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380:294–305.CrossRefPubMed
4.
go back to reference Edwardson C, Gorely T, Davies M, Gray L, Khunti K, Wilmot E, et al. Association of sedentary behaviour with metabolic syndrome. PlosOne. 2012, doi:10.1371/journal.pone.0034916 Edwardson C, Gorely T, Davies M, Gray L, Khunti K, Wilmot E, et al. Association of sedentary behaviour with metabolic syndrome. PlosOne. 2012, doi:10.1371/journal.pone.0034916
5.
go back to reference de Rezende L, Lopes M, Rey-lopez J, Matsudo, Luiz O. Sedentary behaviour and health outcomes: An overview of systematic reviews. PlosOne. 2014. doi:10.1371/journalpone.0105620 de Rezende L, Lopes M, Rey-lopez J, Matsudo, Luiz O. Sedentary behaviour and health outcomes: An overview of systematic reviews. PlosOne. 2014. doi:10.1371/journalpone.0105620
6.
go back to reference Healy GN, Dunstan DW, Salmon J, Cerin C, Shaw J, Zimmet P, et al. Breaks in sedentary time: Beneficial association with metabolic risk. Diabetes Care. 2008;31:661–6.CrossRefPubMed Healy GN, Dunstan DW, Salmon J, Cerin C, Shaw J, Zimmet P, et al. Breaks in sedentary time: Beneficial association with metabolic risk. Diabetes Care. 2008;31:661–6.CrossRefPubMed
7.
go back to reference Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32:590–7.CrossRefPubMedPubMedCentral Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32:590–7.CrossRefPubMedPubMedCentral
8.
go back to reference Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35:976–83.CrossRefPubMedPubMedCentral Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35:976–83.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–57.CrossRefPubMed Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–57.CrossRefPubMed
11.
go back to reference Matthews CE. Physical activity in the United States measured by accelerometer: comment. Med Sci Sport Exer. 2008;40:1188.CrossRef Matthews CE. Physical activity in the United States measured by accelerometer: comment. Med Sci Sport Exer. 2008;40:1188.CrossRef
12.
go back to reference Clemes SA, O’Connell SE, Edwardson CL. Office workers’ objectively measured sedentary behaviour and physical activity during and outside work hours. J Occup Environ Med. 2014;56:298–303.CrossRefPubMed Clemes SA, O’Connell SE, Edwardson CL. Office workers’ objectively measured sedentary behaviour and physical activity during and outside work hours. J Occup Environ Med. 2014;56:298–303.CrossRefPubMed
14.
go back to reference Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson P. Validation of wearable monitors for assessing sedentary behaviour. Med Sci Sports Exerc. 2011;43:1561–7.CrossRefPubMed Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson P. Validation of wearable monitors for assessing sedentary behaviour. Med Sci Sports Exerc. 2011;43:1561–7.CrossRefPubMed
15.
go back to reference Ryan CG, Dall PM, Granat MH, Grant PM. Sitting patterns at work: objective measurement of adherence to current recommendations. Ergonomics. 2011;54:531–8.CrossRef Ryan CG, Dall PM, Granat MH, Grant PM. Sitting patterns at work: objective measurement of adherence to current recommendations. Ergonomics. 2011;54:531–8.CrossRef
16.
go back to reference Tudor-Locke C, Bassett DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34:1–8.CrossRefPubMed Tudor-Locke C, Bassett DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34:1–8.CrossRefPubMed
17.
go back to reference Smith L, Ucci M, Marmot A, Spinney R, Laskowski M, Sawyer A, et al. Active buildings: modelling physical activity and movement in office buildings. An observational study protocol. BMJ Open. 2013;3:e004103.CrossRefPubMedPubMedCentral Smith L, Ucci M, Marmot A, Spinney R, Laskowski M, Sawyer A, et al. Active buildings: modelling physical activity and movement in office buildings. An observational study protocol. BMJ Open. 2013;3:e004103.CrossRefPubMedPubMedCentral
18.
go back to reference Abraham C, Graham-Rowe E. Are worksite interventions effective in increasing physical activity? A systematic review and meta-analysis. Health Psychol Rev. 2009;3:108–44.CrossRef Abraham C, Graham-Rowe E. Are worksite interventions effective in increasing physical activity? A systematic review and meta-analysis. Health Psychol Rev. 2009;3:108–44.CrossRef
19.
20.
go back to reference Chau JY, der Ploeg HP, van Uffelen JG, Wong J, Riphagen I, Healy GN, et al. Are workplace interventions to reduce sitting effective? A systematic review. Prev Med. 2010;51:352–6.CrossRefPubMed Chau JY, der Ploeg HP, van Uffelen JG, Wong J, Riphagen I, Healy GN, et al. Are workplace interventions to reduce sitting effective? A systematic review. Prev Med. 2010;51:352–6.CrossRefPubMed
21.
go back to reference Alkhajah TA, Reeves MM, Eakin EG, Winkler EA, Owen N, Healy GN. Sit-stand workstations: a pilot intervention to reduce office sitting time. Am J Prev Med. 2012;43:298–303.CrossRefPubMed Alkhajah TA, Reeves MM, Eakin EG, Winkler EA, Owen N, Healy GN. Sit-stand workstations: a pilot intervention to reduce office sitting time. Am J Prev Med. 2012;43:298–303.CrossRefPubMed
22.
go back to reference Dewa C, deRuiter W, Chau N, Karioja K. Walking for Wellness: using pedometers to decrease sedentary behaviour and promote health. Int J Mental Health Promot. 2014;11:24–8.CrossRef Dewa C, deRuiter W, Chau N, Karioja K. Walking for Wellness: using pedometers to decrease sedentary behaviour and promote health. Int J Mental Health Promot. 2014;11:24–8.CrossRef
23.
go back to reference Ellegast R, Weber B, Mahlberg R. Method inventory for assessment of physical activity at VDU workplaces. Work. 2012;41:2355–9.PubMed Ellegast R, Weber B, Mahlberg R. Method inventory for assessment of physical activity at VDU workplaces. Work. 2012;41:2355–9.PubMed
24.
go back to reference Evans RE, Fawole HO, Sheriff SA, Dall PM, Grant PM, Ryan CG. Point-of-choice prompts to reduce sitting time at work: a randomized trial. Am J Prev Med. 2012;43:293–7.CrossRefPubMed Evans RE, Fawole HO, Sheriff SA, Dall PM, Grant PM, Ryan CG. Point-of-choice prompts to reduce sitting time at work: a randomized trial. Am J Prev Med. 2012;43:293–7.CrossRefPubMed
25.
go back to reference Healy G, Eakin E, LaMontagne A, Owen N, Winkler E, Wiesner G, et al. Reducing sitting time in office workers: short-term efficacy of a multi-component intervention. Prev Med. 2013;57:43–8.CrossRefPubMed Healy G, Eakin E, LaMontagne A, Owen N, Winkler E, Wiesner G, et al. Reducing sitting time in office workers: short-term efficacy of a multi-component intervention. Prev Med. 2013;57:43–8.CrossRefPubMed
26.
go back to reference Pronk N, Katz A, Lowry M, Payfer J. Reducing occupational sitting time and improving worker health: The Take-a-Stand project, 201. Prev Chronic Dis. 2011: 9. Pronk N, Katz A, Lowry M, Payfer J. Reducing occupational sitting time and improving worker health: The Take-a-Stand project, 201. Prev Chronic Dis. 2011: 9.
27.
go back to reference Verweij L, Proper K, Weel A, Hulshof C, van Mechelen. The application of an occupational health guideline reduces sedentary behaviour and increase fruit intake at work: results from an RCT. Occup Environ Med. 2012;69:500–7.CrossRefPubMed Verweij L, Proper K, Weel A, Hulshof C, van Mechelen. The application of an occupational health guideline reduces sedentary behaviour and increase fruit intake at work: results from an RCT. Occup Environ Med. 2012;69:500–7.CrossRefPubMed
28.
go back to reference Hart TL, Swartz AM, Cashin SE, Strath SJ. How many days of monitoring predict physical activity and sedentary behaviour in older adults? Int J Behav Nutr Phys Act. 2011;8:62.CrossRefPubMedPubMedCentral Hart TL, Swartz AM, Cashin SE, Strath SJ. How many days of monitoring predict physical activity and sedentary behaviour in older adults? Int J Behav Nutr Phys Act. 2011;8:62.CrossRefPubMedPubMedCentral
29.
go back to reference Matthews CE, Ainsworth BE, Thompson RW, Bassett DR. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc. 2002;34:1376–81.CrossRefPubMed Matthews CE, Ainsworth BE, Thompson RW, Bassett DR. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc. 2002;34:1376–81.CrossRefPubMed
30.
go back to reference Oliver M, Schofield GM, Badland HM, Shepherd J. Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med. 2010;51:5.CrossRef Oliver M, Schofield GM, Badland HM, Shepherd J. Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med. 2010;51:5.CrossRef
31.
go back to reference Dall PM, Kerr A. Frequency of sit to stand task: an observational study of free-living adults. Appl Ergon. 2010;41:58–61.CrossRefPubMed Dall PM, Kerr A. Frequency of sit to stand task: an observational study of free-living adults. Appl Ergon. 2010;41:58–61.CrossRefPubMed
32.
go back to reference Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40:992–7.CrossRefPubMedPubMedCentral Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40:992–7.CrossRefPubMedPubMedCentral
33.
go back to reference Bertrais S, Beyeme-Ondoua JP, Czernichow S, Galan P, Hercberg S, Oppert JM. Sedentary behaviors, physical activity, and metabolic syndrome in middle-aged French subjects. Obes Res. 2005;13:936–44.CrossRefPubMed Bertrais S, Beyeme-Ondoua JP, Czernichow S, Galan P, Hercberg S, Oppert JM. Sedentary behaviors, physical activity, and metabolic syndrome in middle-aged French subjects. Obes Res. 2005;13:936–44.CrossRefPubMed
34.
go back to reference Steeves JA, Thompson DL, Bassett DR. Energy cost of stepping in place while watching television commercials. Med Sci Sport Exer. 2012;44:330–5.CrossRef Steeves JA, Thompson DL, Bassett DR. Energy cost of stepping in place while watching television commercials. Med Sci Sport Exer. 2012;44:330–5.CrossRef
35.
go back to reference Smith L, Thomas EL, Bell JD, Hamer M. The association between objectively measured sitting and standing with body composition: a pilot study using MRI. BMJ Open. 2014;4:e005476.CrossRefPubMedPubMedCentral Smith L, Thomas EL, Bell JD, Hamer M. The association between objectively measured sitting and standing with body composition: a pilot study using MRI. BMJ Open. 2014;4:e005476.CrossRefPubMedPubMedCentral
Metadata
Title
Weekday and weekend patterns of objectively measured sitting, standing, and stepping in a sample of office-based workers: the active buildings study
Authors
Lee Smith
Mark Hamer
Marcella Ucci
Alexi Marmot
Benjamin Gardner
Alexia Sawyer
Jane Wardle
Abigail Fisher
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-014-1338-1

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue