Skip to main content
Top
Published in: BMC Psychiatry 1/2017

Open Access 01-12-2017 | Research article

Brain structure differences among male schizophrenic patients with history of serious violent acts: an MRI voxel-based morphometric study

Authors: Noriomi Kuroki, Hiroko Kashiwagi, Miho Ota, Masanori Ishikawa, Hiroshi Kunugi, Noriko Sato, Naotsugu Hirabayashi, Toshio Ota

Published in: BMC Psychiatry | Issue 1/2017

Login to get access

Abstract

Background

The biological underpinnings of serious violent behaviors in patients with schizophrenia remain unclear. The aim of this study was to identify the characteristics of brain morphometry in patients with schizophrenia and a history of serious violent acts, who were being treated under relatively new legislation for offenders with mental illness in Japan where their relevant action should be strongly associated with their mental illness. We also investigated whether morphometric changes would depend on types of serious violent actions or not.

Methods

Thirty-four male patients with schizophrenia who were hospitalized after committing serious violent acts were compared with 23 male outpatients or inpatients with schizophrenia and no history of violent acts. T1-weighted magnetic resonance imaging (MRI) with voxel-based morphometry was used to assess gray matter volume. Additionally, patients with violent acts were divided based on whether their relevant actions were premeditated or not. The regional volumes of these two groups were compared to those of the control patient group.

Results

Patients with schizophrenia and a history of serious violent acts showed significantly smaller regional volumes of the right inferior temporal area expanded to the middle temporal gyrus and the temporal pole, and the right insular area compared to patients without a history of violence. Patients with premeditated violent acts showed significantly smaller regional volumes of the right inferior temporal area, the right insular area, the left planum polare area including the insula, and the bilateral precuneus area including the posterior cingulate gyrus than those without a history of violence, whereas patients with impulsive violent acts showed significantly smaller volumes of only the right inferior temporal area compared to those without a history of violence.

Conclusions

Patients with schizophrenia and a history of serious violent acts showed structural differences in some brain regions compared to those with schizophrenia and no history of violence. Abnormalities in the right inferior temporal area were relatively common but did not depend on whether the violent actions were premeditated or not, and abnormalities in a wider range may be attributed to not only planning the violent action against others but also to maintaining that plan.

Trial registration

UMIN.ac.jp UMIN000008065. Registered 2012/05/31.
Literature
2.
go back to reference Swanson JW, Swartz MS, Van Dorn RA, Elbogen EB, Wagner HR, Rosenheck RA, et al. A national study of violent behavior in persons with schizophrenia. Arch Gen Psychiatry. 2006;63:490–9.CrossRefPubMed Swanson JW, Swartz MS, Van Dorn RA, Elbogen EB, Wagner HR, Rosenheck RA, et al. A national study of violent behavior in persons with schizophrenia. Arch Gen Psychiatry. 2006;63:490–9.CrossRefPubMed
3.
go back to reference Swanson JW, Van Dorn RA, Swartz MS, Smith A, Elbogen EB, Monahan J. Alternative pathways to violence in persons with schizophrenia: the role of childhood antisocial behavior problems. Law Hum Behav. 2008;32:228–40.CrossRefPubMed Swanson JW, Van Dorn RA, Swartz MS, Smith A, Elbogen EB, Monahan J. Alternative pathways to violence in persons with schizophrenia: the role of childhood antisocial behavior problems. Law Hum Behav. 2008;32:228–40.CrossRefPubMed
4.
go back to reference Sariaslan A, Larsson H, Fazel S. Genetic and environmental determinants of violence risk in psychotic disorders: a multivariate quantitative genetic study of 1.8 million Swedish twins and siblings. Mol Psychiatry. 2016;21:1251–6. Sariaslan A, Larsson H, Fazel S. Genetic and environmental determinants of violence risk in psychotic disorders: a multivariate quantitative genetic study of 1.8 million Swedish twins and siblings. Mol Psychiatry. 2016;21:1251–6.
5.
go back to reference Lishman WA. Brain damage in relation to psychiatric disability after head injury. Br J Psychiatry. 1968;114:373–410.CrossRefPubMed Lishman WA. Brain damage in relation to psychiatric disability after head injury. Br J Psychiatry. 1968;114:373–410.CrossRefPubMed
6.
go back to reference Damasio AR. A neural basis for sociopathy. Arch Gen Psychiatry. 2000;57:128–9.CrossRef Damasio AR. A neural basis for sociopathy. Arch Gen Psychiatry. 2000;57:128–9.CrossRef
7.
go back to reference Gregory S. ffytche D, Simmons A, Kumari V, Howard M, Hodgins S, et al. The antisocial brain: psychopathy matters. Arch Gen Psychiatry. 2012;69:962–72.CrossRefPubMed Gregory S. ffytche D, Simmons A, Kumari V, Howard M, Hodgins S, et al. The antisocial brain: psychopathy matters. Arch Gen Psychiatry. 2012;69:962–72.CrossRefPubMed
8.
go back to reference Bertsch K, Grothe M, Prehn K, Vohs K, Berger C, Hauenstein K, et al. Brain volumes differ between diagnostic groups of violent criminal offenders. Eur Arch Psychiatry Clin Neurosci. 2013;263:593–606.CrossRefPubMed Bertsch K, Grothe M, Prehn K, Vohs K, Berger C, Hauenstein K, et al. Brain volumes differ between diagnostic groups of violent criminal offenders. Eur Arch Psychiatry Clin Neurosci. 2013;263:593–606.CrossRefPubMed
9.
go back to reference Kolla NJ, Gregory S, Attard S, Blackwood N, Hodgins S. Disentangling possible effects of childhood physical abuse on gray matter changes in violent offenders with psychopathy. Psychiatry Res. 2014;221:123–6.CrossRefPubMedPubMedCentral Kolla NJ, Gregory S, Attard S, Blackwood N, Hodgins S. Disentangling possible effects of childhood physical abuse on gray matter changes in violent offenders with psychopathy. Psychiatry Res. 2014;221:123–6.CrossRefPubMedPubMedCentral
10.
go back to reference Kumari V, Uddin S, Premkumar P, Young S, Gudjonsson GH, Raghuvanshi S, et al. Lower anterior cingulate volume in seriously violent men with antisocial personality disorder or schizophrenia and a history of childhood abuse. Aust N Z J Psychiatry. 2014;48:153–61.CrossRefPubMed Kumari V, Uddin S, Premkumar P, Young S, Gudjonsson GH, Raghuvanshi S, et al. Lower anterior cingulate volume in seriously violent men with antisocial personality disorder or schizophrenia and a history of childhood abuse. Aust N Z J Psychiatry. 2014;48:153–61.CrossRefPubMed
11.
go back to reference Boccardi M, Bocchetta M, Aronen HJ, Repo-Tiihonen E, Vaurio O, Thompson PM, et al. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle. Int J Law Psychiatry. 2013;36:157–67.CrossRefPubMedPubMedCentral Boccardi M, Bocchetta M, Aronen HJ, Repo-Tiihonen E, Vaurio O, Thompson PM, et al. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle. Int J Law Psychiatry. 2013;36:157–67.CrossRefPubMedPubMedCentral
12.
go back to reference Boccardi M, Frisoni GB, Hare RD, Cavedo E, Najt P, Pievani M, et al. Cortex and amygdala morphology in psychopathy. Psychiatry Res. 2011;193:85–92.CrossRefPubMed Boccardi M, Frisoni GB, Hare RD, Cavedo E, Najt P, Pievani M, et al. Cortex and amygdala morphology in psychopathy. Psychiatry Res. 2011;193:85–92.CrossRefPubMed
13.
go back to reference Boccardi M, Ganzola R, Rossi R, Sabattoli F, Laakso MP, Repo-Tiihonen E, et al. Abnormal hippocampal shape in offenders with psychopathy. Hum Brain Mapp. 2010;31:438–47.PubMed Boccardi M, Ganzola R, Rossi R, Sabattoli F, Laakso MP, Repo-Tiihonen E, et al. Abnormal hippocampal shape in offenders with psychopathy. Hum Brain Mapp. 2010;31:438–47.PubMed
14.
go back to reference Hoptman MJ, Volavka J, Weiss EM, Czobor P, Szeszko PR, Gerig G, et al. Quantitative MRI measures of orbitofrontal cortex in patients with chronic schizophrenia or schizoaffective disorder. Psychiatry Res. 2005;140:133–45.CrossRefPubMedPubMedCentral Hoptman MJ, Volavka J, Weiss EM, Czobor P, Szeszko PR, Gerig G, et al. Quantitative MRI measures of orbitofrontal cortex in patients with chronic schizophrenia or schizoaffective disorder. Psychiatry Res. 2005;140:133–45.CrossRefPubMedPubMedCentral
15.
go back to reference Hoptman MJ, Volavka J, Czobor P, Gerig G, Chakos M, Blocher J, et al. Aggression and quantitative MRI measures of caudate in patients with chronic schizophrenia or schizoaffective disorder. J Neuropsychiatry Clin Neurosci. 2006;18:509–15.CrossRefPubMedPubMedCentral Hoptman MJ, Volavka J, Czobor P, Gerig G, Chakos M, Blocher J, et al. Aggression and quantitative MRI measures of caudate in patients with chronic schizophrenia or schizoaffective disorder. J Neuropsychiatry Clin Neurosci. 2006;18:509–15.CrossRefPubMedPubMedCentral
16.
go back to reference Hoptman MJ, Antonius D, Mauro CJ, Parker EM, Javitt DC. Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: relationship to aggressive attitudes and behavior. Am J Psychiatry. 2014;171:939–48.CrossRefPubMedPubMedCentral Hoptman MJ, Antonius D, Mauro CJ, Parker EM, Javitt DC. Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: relationship to aggressive attitudes and behavior. Am J Psychiatry. 2014;171:939–48.CrossRefPubMedPubMedCentral
17.
go back to reference Barkataki I, Kumari V, Das M, Taylor P, Sharma T. Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behav Brain Res. 2006;169:239–47.CrossRefPubMed Barkataki I, Kumari V, Das M, Taylor P, Sharma T. Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behav Brain Res. 2006;169:239–47.CrossRefPubMed
18.
go back to reference Kumari V, Barkataki I, Goswami S, Flora S, Das M, Taylor P. Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res. 2009;173:39–44.CrossRefPubMed Kumari V, Barkataki I, Goswami S, Flora S, Das M, Taylor P. Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res. 2009;173:39–44.CrossRefPubMed
19.
go back to reference Yang Y, Raine A, Han CB, Schug RA, Toga AW, Narr KL. Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Res. 2010;182:9–13.CrossRefPubMedPubMedCentral Yang Y, Raine A, Han CB, Schug RA, Toga AW, Narr KL. Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Res. 2010;182:9–13.CrossRefPubMedPubMedCentral
20.
go back to reference Kumari V, Gudjonsson GH, Raghuvanshi S, Barkataki I, Taylor P, Sumich A, et al. Reduced thalamic volume in men with antisocial personality disorder or schizophrenia and a history of serious violence and childhood abuse. Eur Psychiatry. 2013;28:225–34.CrossRefPubMed Kumari V, Gudjonsson GH, Raghuvanshi S, Barkataki I, Taylor P, Sumich A, et al. Reduced thalamic volume in men with antisocial personality disorder or schizophrenia and a history of serious violence and childhood abuse. Eur Psychiatry. 2013;28:225–34.CrossRefPubMed
21.
go back to reference Narayan VM, Narr KL, Kumari V, Woods RP, Thompson PM, Toga AW, et al. Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia. Am J Psychiatry. 2007;164:1418–27.CrossRefPubMedPubMedCentral Narayan VM, Narr KL, Kumari V, Woods RP, Thompson PM, Toga AW, et al. Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia. Am J Psychiatry. 2007;164:1418–27.CrossRefPubMedPubMedCentral
23.
go back to reference Nakatani Y, Kojimoto M, Matsubara S, Takayanagi I. New legislation for offenders with mental disorders in Japan. Int J Law Psychiatry. 2010;33:7–12.CrossRefPubMed Nakatani Y, Kojimoto M, Matsubara S, Takayanagi I. New legislation for offenders with mental disorders in Japan. Int J Law Psychiatry. 2010;33:7–12.CrossRefPubMed
24.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington DC: American Psychiatric Association; 2000. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington DC: American Psychiatric Association; 2000.
25.
go back to reference Gunn J, Robertson G. Drawing a criminal profile. Brit J Criminology. 1976;16:156–60.CrossRef Gunn J, Robertson G. Drawing a criminal profile. Brit J Criminology. 1976;16:156–60.CrossRef
26.
go back to reference Inagaki A, Inada T. Dose equivalence of psychotropic drugs. Part 18: dose equivalence of psychotropic drugs: 2006-version. Jpn J Clin Psychopharmacol. 2006;9:1443–7. Inagaki A, Inada T. Dose equivalence of psychotropic drugs. Part 18: dose equivalence of psychotropic drugs: 2006-version. Jpn J Clin Psychopharmacol. 2006;9:1443–7.
27.
go back to reference Kay S, Opler L, Fiszbein A. Positive and negative syndrome scale (PANSS) rating manual. Toronto: Multi-Health Systems Inc.; 1991. Kay S, Opler L, Fiszbein A. Positive and negative syndrome scale (PANSS) rating manual. Toronto: Multi-Health Systems Inc.; 1991.
28.
go back to reference Igarashi Y, Hayashi N, Yamashina M, Otsuka N, Kuroki N, Anzai N, et al. Interrater reliability of the Japanese version of the positive and negative syndrome scale and the appraisal of its training effect. Psychiatry Clin Neurosci. 1998;52:467–70.CrossRefPubMed Igarashi Y, Hayashi N, Yamashina M, Otsuka N, Kuroki N, Anzai N, et al. Interrater reliability of the Japanese version of the positive and negative syndrome scale and the appraisal of its training effect. Psychiatry Clin Neurosci. 1998;52:467–70.CrossRefPubMed
29.
go back to reference Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D. Searching for a consensus five-factor model of the positive and negative syndrome scale for schizophrenia. Schizophr Res. 2012;137:246–50.CrossRefPubMedPubMedCentral Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D. Searching for a consensus five-factor model of the positive and negative syndrome scale for schizophrenia. Schizophr Res. 2012;137:246–50.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Ridgway GR, Omar R, Ourselin S, Hill DL, Warren JD, Fox NC. Issues with threshold masking in voxel-based morphometry of atrophied brains. NeuroImage. 2009;44:99–111.CrossRefPubMed Ridgway GR, Omar R, Ourselin S, Hill DL, Warren JD, Fox NC. Issues with threshold masking in voxel-based morphometry of atrophied brains. NeuroImage. 2009;44:99–111.CrossRefPubMed
33.
go back to reference Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci. 2013;17:26–49.CrossRefPubMed Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci. 2013;17:26–49.CrossRefPubMed
34.
go back to reference Pessoa L, Adolphs R. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci. 2010;11:773–83.CrossRefPubMedPubMedCentral Pessoa L, Adolphs R. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci. 2010;11:773–83.CrossRefPubMedPubMedCentral
35.
go back to reference Bilalic M. Revisiting the role of the fusiform face area in expertise. J Cogn Neurosci. 2016;28:1345–57.CrossRefPubMed Bilalic M. Revisiting the role of the fusiform face area in expertise. J Cogn Neurosci. 2016;28:1345–57.CrossRefPubMed
36.
go back to reference Kark SM, Kensinger EA. Effect of emotional valence on retrieval-related recapitulation of encoding activity in the ventral visual stream. Neuropsychologia. 2015;78:221–30.CrossRefPubMedPubMedCentral Kark SM, Kensinger EA. Effect of emotional valence on retrieval-related recapitulation of encoding activity in the ventral visual stream. Neuropsychologia. 2015;78:221–30.CrossRefPubMedPubMedCentral
37.
go back to reference Olson IR, Plotzker A, Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007;130:1718–31.CrossRefPubMed Olson IR, Plotzker A, Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007;130:1718–31.CrossRefPubMed
38.
go back to reference Pehrs C, Zaki J, Schlochtermeier LH, Jacobs AM, Kuchinke L, Koelsch S. The temporal pole top-down modulates the ventral visual stream during social cognition. Cereb Cortex. 2015; doi:10.1093/cercor/bhv226. Pehrs C, Zaki J, Schlochtermeier LH, Jacobs AM, Kuchinke L, Koelsch S. The temporal pole top-down modulates the ventral visual stream during social cognition. Cereb Cortex. 2015; doi:10.​1093/​cercor/​bhv226.
39.
go back to reference Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, et al. Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci. 2000;20:7752–9.PubMed Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, et al. Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci. 2000;20:7752–9.PubMed
40.
go back to reference Saarela MV, Hlushchuk Y, Williams AC, Schurmann M, Kalso E, Hari R. The compassionate brain: humans detect intensity of pain from another's face. Cereb Cortex. 2007;17:230–7.CrossRefPubMed Saarela MV, Hlushchuk Y, Williams AC, Schurmann M, Kalso E, Hari R. The compassionate brain: humans detect intensity of pain from another's face. Cereb Cortex. 2007;17:230–7.CrossRefPubMed
41.
go back to reference Jabbi M, Bastiaansen J, Keysers C. A common anterior insula representation of disgust observation, experience and imagination shows divergent functional connectivity pathways. PLoS One. 2008;3:e2939.CrossRefPubMedPubMedCentral Jabbi M, Bastiaansen J, Keysers C. A common anterior insula representation of disgust observation, experience and imagination shows divergent functional connectivity pathways. PLoS One. 2008;3:e2939.CrossRefPubMedPubMedCentral
42.
go back to reference Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.CrossRefPubMed Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.CrossRefPubMed
43.
go back to reference Kandylaki KD, Nagels A, Tune S, Wiese R, Bornkessel-Schlesewsky I, Kircher T. Processing of false belief passages during natural story comprehension: an fMRI study. Hum Brain Mapp. 2015;36:4231–46.CrossRefPubMed Kandylaki KD, Nagels A, Tune S, Wiese R, Bornkessel-Schlesewsky I, Kircher T. Processing of false belief passages during natural story comprehension: an fMRI study. Hum Brain Mapp. 2015;36:4231–46.CrossRefPubMed
44.
go back to reference Van Dongen JD, Buck NM, Barendregt M, Van Beveren NM, De Beurs E, Van Marle HJ. Anti-social personality characteristics and psychotic symptoms: two pathways associated with offending in schizophrenia. Crim Behav Ment Health. 2015;25:181–91.CrossRefPubMed Van Dongen JD, Buck NM, Barendregt M, Van Beveren NM, De Beurs E, Van Marle HJ. Anti-social personality characteristics and psychotic symptoms: two pathways associated with offending in schizophrenia. Crim Behav Ment Health. 2015;25:181–91.CrossRefPubMed
45.
go back to reference Nishinaka H, Nakane J, Nagata T, Imai A, Kuroki N, Sakikawa N, et al. Neuropsychological impairment and its association with violence risk in japanese forensic psychiatric patients: a case-control study. PLoS One. 2016;11:e0148354.CrossRefPubMedPubMedCentral Nishinaka H, Nakane J, Nagata T, Imai A, Kuroki N, Sakikawa N, et al. Neuropsychological impairment and its association with violence risk in japanese forensic psychiatric patients: a case-control study. PLoS One. 2016;11:e0148354.CrossRefPubMedPubMedCentral
Metadata
Title
Brain structure differences among male schizophrenic patients with history of serious violent acts: an MRI voxel-based morphometric study
Authors
Noriomi Kuroki
Hiroko Kashiwagi
Miho Ota
Masanori Ishikawa
Hiroshi Kunugi
Noriko Sato
Naotsugu Hirabayashi
Toshio Ota
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2017
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-017-1263-9

Other articles of this Issue 1/2017

BMC Psychiatry 1/2017 Go to the issue