Skip to main content
Top
Published in: BMC Psychiatry 1/2016

Open Access 01-12-2016 | Research article

DNA hypomethylation of Synapsin II CpG islands associates with increased gene expression in bipolar disorder and major depression

Authors: Cristiana Cruceanu, Elena Kutsarova, Elizabeth S. Chen, David R. Checknita, Corina Nagy, Juan Pablo Lopez, Martin Alda, Guy A. Rouleau, Gustavo Turecki

Published in: BMC Psychiatry | Issue 1/2016

Login to get access

Abstract

Background

The Synapsins (SYN1, SYN2, and SYN3) are important players in the adult brain, given their involvement in synaptic transmission and plasticity, as well as in the developing brain through roles in axon outgrowth and synaptogenesis. We and others previously reported gene expression dysregulation, both as increases and decreases, of Synapsins in mood disorders, but little is known about the regulatory mechanisms leading to these differences. Thus, we proposed to study DNA methylation at theses genes’ promoter regions, under the assumption that altered epigenetic marks at key regulatory sites would be the cause of gene expression changes and thus part of the mood disorder etiology.

Methods

We performed CpG methylation mapping focusing on the three genes’ predicted CpG islands using the Sequenom EpiTYPER platform. DNA extracted from post-mortem brain tissue (BA10) from individuals who had lived with bipolar disorder (BD), major depressive disorder (MDD), as well as psychiatrically healthy individuals was used. Differences in methylation across all CpGs within a CpG island and between the three diagnostic groups were assessed by 2-way mixed model analyses of variance.

Results

We found no significant results for SYN1 or SYN3, but there was a significant group difference in SYN2 methylation, as well as an overall pattern of hypomethylation across the CpG island. Furthermore, we found a significant inverse correlation of DNA methylation with SYN2a mRNA expression.

Conclusions

These findings contribute to previous work showing dysregulation of Synapsins, particularly SYN2, in mood disorders and improve our understanding of the regulatory mechanisms that precipitate these changes likely leading to the BD or MDD phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol. 2010;91(4):313–48.CrossRefPubMed Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol. 2010;91(4):313–48.CrossRefPubMed
2.
go back to reference Cruceanu C, Freemantle E, Alda M, Rouleau GA, Turecki G. Epigenetic regulation of synapsin genes in mood disorders. Neuropsychopharmacology. 2013;38(1):239–41.CrossRefPubMed Cruceanu C, Freemantle E, Alda M, Rouleau GA, Turecki G. Epigenetic regulation of synapsin genes in mood disorders. Neuropsychopharmacology. 2013;38(1):239–41.CrossRefPubMed
3.
4.
go back to reference Park HJ, Kim SK, Kang WS, Chung JH, Kim JW. Increased activation of synapsin 1 and mitogen-activated protein kinases/extracellular signal-regulated kinase in the amygdala of maternal separation rats. CNS Neurosci Ther. 2014;20(2):172–81.CrossRefPubMed Park HJ, Kim SK, Kang WS, Chung JH, Kim JW. Increased activation of synapsin 1 and mitogen-activated protein kinases/extracellular signal-regulated kinase in the amygdala of maternal separation rats. CNS Neurosci Ther. 2014;20(2):172–81.CrossRefPubMed
5.
go back to reference Cruceanu C, Alda M, Nagy C, Freemantle E, Rouleau GA, Turecki G. H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol. 2013;16(2):289–99.CrossRefPubMed Cruceanu C, Alda M, Nagy C, Freemantle E, Rouleau GA, Turecki G. H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol. 2013;16(2):289–99.CrossRefPubMed
6.
go back to reference Lopez de Lara C, Jaitovich-Groisman I, Cruceanu C, Mamdani F, Lebel V, Yerko V, Beck A, Young LT, Rouleau G, Grof P, et al. Implication of synapse-related genes in bipolar disorder by linkage and gene expression analyses. Int J Neuropsychopharmacol. 2010;13(10):1397–410.CrossRefPubMed Lopez de Lara C, Jaitovich-Groisman I, Cruceanu C, Mamdani F, Lebel V, Yerko V, Beck A, Young LT, Rouleau G, Grof P, et al. Implication of synapse-related genes in bipolar disorder by linkage and gene expression analyses. Int J Neuropsychopharmacol. 2010;13(10):1397–410.CrossRefPubMed
7.
go back to reference Gross JA, Fiori LM, Labonte B, Lopez JP, Turecki G. Effects of promoter methylation on increased expression of polyamine biosynthetic genes in suicide. J Psychiatr Res. 2013;47(4):513–9.CrossRefPubMed Gross JA, Fiori LM, Labonte B, Lopez JP, Turecki G. Effects of promoter methylation on increased expression of polyamine biosynthetic genes in suicide. J Psychiatr Res. 2013;47(4):513–9.CrossRefPubMed
8.
go back to reference Robinson JL, Monkul ES, Tordesillas-Gutierrez D, Franklin C, Bearden CE, Fox PT, Glahn DC. Fronto-limbic circuitry in euthymic bipolar disorder: evidence for prefrontal hyperactivation. Psychiatry Res. 2008;164(2):106–13.CrossRefPubMed Robinson JL, Monkul ES, Tordesillas-Gutierrez D, Franklin C, Bearden CE, Fox PT, Glahn DC. Fronto-limbic circuitry in euthymic bipolar disorder: evidence for prefrontal hyperactivation. Psychiatry Res. 2008;164(2):106–13.CrossRefPubMed
9.
go back to reference Malhi GS, Ivanovski B, Hadzi-Pavlovic D, Mitchell PB, Vieta E, Sachdev P. Neuropsychological deficits and functional impairment in bipolar depression, hypomania and euthymia. Bipolar Disord. 2007;9(1-2):114–25.CrossRefPubMed Malhi GS, Ivanovski B, Hadzi-Pavlovic D, Mitchell PB, Vieta E, Sachdev P. Neuropsychological deficits and functional impairment in bipolar depression, hypomania and euthymia. Bipolar Disord. 2007;9(1-2):114–25.CrossRefPubMed
10.
go back to reference Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet. 2007;8(1):9–22.CrossRefPubMed Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet. 2007;8(1):9–22.CrossRefPubMed
11.
go back to reference Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439(7078):871–4.CrossRefPubMed Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439(7078):871–4.CrossRefPubMed
12.
go back to reference Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 2011;6(1):e14524.CrossRefPubMedPubMedCentral Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 2011;6(1):e14524.CrossRefPubMedPubMedCentral
13.
go back to reference Liu H, Chen Y, Lv J, Liu H, Zhu R, Su J, Liu X, Zhang Y, Wu Q. Quantitative epigenetic co-variation in CpG islands and co-regulation of developmental genes. Sci Rep. 2013;3:2576.PubMed Liu H, Chen Y, Lv J, Liu H, Zhu R, Su J, Liu X, Zhang Y, Wu Q. Quantitative epigenetic co-variation in CpG islands and co-regulation of developmental genes. Sci Rep. 2013;3:2576.PubMed
14.
go back to reference Yan H, Zhang D, Liu H, Wei Y, Lv J, Wang F, Zhang C, Wu Q, Su J, Zhang Y. Chromatin modifications and genomic contexts linked to dynamic DNA methylation patterns across human cell types. Sci Rep. 2015;5:8410.CrossRefPubMedPubMedCentral Yan H, Zhang D, Liu H, Wei Y, Lv J, Wang F, Zhang C, Wu Q, Su J, Zhang Y. Chromatin modifications and genomic contexts linked to dynamic DNA methylation patterns across human cell types. Sci Rep. 2015;5:8410.CrossRefPubMedPubMedCentral
15.
go back to reference Schwartzman O, Tanay A. Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet. 2015;16(12):716–26.CrossRefPubMed Schwartzman O, Tanay A. Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet. 2015;16(12):716–26.CrossRefPubMed
16.
go back to reference Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood SA, Ponting CP, Voet T, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13(3):229–32.CrossRefPubMedPubMedCentral Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood SA, Ponting CP, Voet T, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13(3):229–32.CrossRefPubMedPubMedCentral
17.
go back to reference Hyun BR, McElwee JL, Soloway PD. Single molecule and single cell epigenomics. Methods. 2015;72:41–50.CrossRefPubMed Hyun BR, McElwee JL, Soloway PD. Single molecule and single cell epigenomics. Methods. 2015;72:41–50.CrossRefPubMed
18.
go back to reference Molinaro L, Hui P, Tan M, Mishra RK. Role of presynaptic phosphoprotein synapsin II in schizophrenia. World J Psychiatry. 2015;5(3):260–72.PubMedPubMedCentral Molinaro L, Hui P, Tan M, Mishra RK. Role of presynaptic phosphoprotein synapsin II in schizophrenia. World J Psychiatry. 2015;5(3):260–72.PubMedPubMedCentral
Metadata
Title
DNA hypomethylation of Synapsin II CpG islands associates with increased gene expression in bipolar disorder and major depression
Authors
Cristiana Cruceanu
Elena Kutsarova
Elizabeth S. Chen
David R. Checknita
Corina Nagy
Juan Pablo Lopez
Martin Alda
Guy A. Rouleau
Gustavo Turecki
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2016
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-016-0989-0

Other articles of this Issue 1/2016

BMC Psychiatry 1/2016 Go to the issue