Skip to main content
Top
Published in: BMC Pediatrics 1/2020

01-12-2020 | Premature Birth | Research article

Comparative study between Fenton and intergrowth 21 charts in a sample of Lebanese premature babies

Authors: Marie Samarani, Gianna Restom, Joelle Mardini, Georges Abi Fares, Souheil Hallit, Marie-Claude Fadous Khalife

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Different charts are used to assess premature growth. The Fenton chart, based on prenatal growth, has been used in the neonates’ intensive care unit (NICU) of the Notre Dame des Secours University Hospital to assess premature newborns’ development. Intergrowth21 is a new multidisciplinary, multiethnic growth chart better adapted to premature growth. Our objective was to compare both charts Fenton and Intergrowth21 in order to implement Intergrowth in our unit.

Methods

We analyzed 318 files of premature babies born who were admitted to the NICU from 2010 till 2017. Anthropometric data (weight, height and head circumference) converted to percentiles was filled on both charts from birth till 1 month of age.

Results

The results of the linear regression, taking the weight at birth as the dependent variable, showed that the Fenton scale (R2 = 0.391) would predict the weight at birth better than the Intergrowth 21 scale (R2 = 0.257). The same applies for height and cranial perimeter at birth when taken as dependent variables. When considering the weight and height at 2 weeks, the results showed that the Intergrowth 21 scale would predict those variables better than the Fenton scale, with higher R2 values higher in favor of the Intergrowth 21 scale for both weight (0.384 vs 0.311) and height (0.650 vs 0.585). At 4 weeks, the results showed that the Fenton scale would predict weight (R2 = 0.655 vs 0.631) and height (R2 = 0.710 vs 0.643) better than the Intergrowth 21 scale. The results obtained were adjusted over the newborns’ sociodemographic and clinical factors.

Conclusion

The results of our study are controversial where the Fenton growth charts are superior to Intergrowth 21 before 2 weeks of age and at 4 weeks, whereas Intergrowth 21 charts showed higher percentiles for weight and height than Fenton charts at 2 two weeks of age. Further studies following a different design, such as a clinical trial or a prospective study, taking multiple ethnicities into account and conducted in multiple centers should be considered to enroll a more representative sample of Lebanese children and be able to extrapolate our results to the national level.
Literature
1.
go back to reference Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. Lancet. 2016;388(10063):3027–35.CrossRef Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. Lancet. 2016;388(10063):3027–35.CrossRef
2.
go back to reference Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: final data for 2016. Natl Vital Stat Rep. 2018;67(1):1–55.PubMed Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: final data for 2016. Natl Vital Stat Rep. 2018;67(1):1–55.PubMed
3.
go back to reference Cooke RJ, Ainsworth SB, Fenton AC. Postnatal growth retardation: a universal problem in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2004;89(5):F428–30.CrossRef Cooke RJ, Ainsworth SB, Fenton AC. Postnatal growth retardation: a universal problem in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2004;89(5):F428–30.CrossRef
4.
go back to reference Schlaudecker EP, Munoz FM, Bardaji A, et al. Small for gestational age: Case definition & guidelines for data collection, analysis, and presentation of maternal immunisation safety data. Vaccine. 2017;35(48 Pt A):6518–28.CrossRef Schlaudecker EP, Munoz FM, Bardaji A, et al. Small for gestational age: Case definition & guidelines for data collection, analysis, and presentation of maternal immunisation safety data. Vaccine. 2017;35(48 Pt A):6518–28.CrossRef
5.
go back to reference Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front Endocrinol (Lausanne). 2019;10:55.CrossRef Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front Endocrinol (Lausanne). 2019;10:55.CrossRef
6.
go back to reference Parkinson JR, Hyde MJ, Gale C, Santhakumaran S, Modi N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics. 2013;131(4):e1240–63.CrossRef Parkinson JR, Hyde MJ, Gale C, Santhakumaran S, Modi N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics. 2013;131(4):e1240–63.CrossRef
7.
go back to reference Fenton TR, Chan HT, Madhu A, et al. Preterm Infant Growth Velocity Calculations: A Systematic Review. Pediatrics. 2017;139(3):e20162045.CrossRef Fenton TR, Chan HT, Madhu A, et al. Preterm Infant Growth Velocity Calculations: A Systematic Review. Pediatrics. 2017;139(3):e20162045.CrossRef
9.
go back to reference Villar J, Giuliani F, Barros F, et al. Monitoring the Postnatal Growth of Preterm Infants: A Paradigm Change. Pediatrics. 2018;141(2):e20172467.CrossRef Villar J, Giuliani F, Barros F, et al. Monitoring the Postnatal Growth of Preterm Infants: A Paradigm Change. Pediatrics. 2018;141(2):e20172467.CrossRef
10.
go back to reference Anderson NH, Sadler LC, McKinlay CJD, McCowan LME. INTERGROWTH-21st vs customized birthweight standards for identification of perinatal mortality and morbidity. Am J Obstet Gynecol. 2016;214(4):509 e501–7.CrossRef Anderson NH, Sadler LC, McKinlay CJD, McCowan LME. INTERGROWTH-21st vs customized birthweight standards for identification of perinatal mortality and morbidity. Am J Obstet Gynecol. 2016;214(4):509 e501–7.CrossRef
11.
go back to reference Fenton TR, Anderson D, Groh-Wargo S, Hoyos A, Ehrenkranz RA, Senterre T. An attempt to standardize the calculation of growth velocity of preterm infants-evaluation of practical bedside methods. J Pediatr. 2018;196:77–83.CrossRef Fenton TR, Anderson D, Groh-Wargo S, Hoyos A, Ehrenkranz RA, Senterre T. An attempt to standardize the calculation of growth velocity of preterm infants-evaluation of practical bedside methods. J Pediatr. 2018;196:77–83.CrossRef
12.
go back to reference Tuzun F, Yucesoy E, Baysal B, Kumral A, Duman N, Ozkan H. Comparison of INTERGROWTH-21 and Fenton growth standards to assess size at birth and extrauterine growth in very preterm infants. J Matern Fetal Neonatal Med. 2018;31(17):2252–7.CrossRef Tuzun F, Yucesoy E, Baysal B, Kumral A, Duman N, Ozkan H. Comparison of INTERGROWTH-21 and Fenton growth standards to assess size at birth and extrauterine growth in very preterm infants. J Matern Fetal Neonatal Med. 2018;31(17):2252–7.CrossRef
13.
go back to reference Kozuki N, Katz J, Christian P, et al. Comparison of US birth weight references and the international fetal and newborn growth consortium for the 21st century standard. JAMA Pediatr. 2015;169(7):e151438.CrossRef Kozuki N, Katz J, Christian P, et al. Comparison of US birth weight references and the international fetal and newborn growth consortium for the 21st century standard. JAMA Pediatr. 2015;169(7):e151438.CrossRef
14.
go back to reference Pour R. Le guide d’utilisation des nouvelles courbes de croissance de l’OMS à l’intention du professionnel de la santé. Paediatric Child Health. 2010;15(2):91–8.CrossRef Pour R. Le guide d’utilisation des nouvelles courbes de croissance de l’OMS à l’intention du professionnel de la santé. Paediatric Child Health. 2010;15(2):91–8.CrossRef
15.
go back to reference Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.CrossRef Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.CrossRef
16.
go back to reference Clark RH, Olsen IE. Do We Need Another Set of Growth Charts for Premature Infants?. Pediatrics. 2016;138(6):e20163128.CrossRef Clark RH, Olsen IE. Do We Need Another Set of Growth Charts for Premature Infants?. Pediatrics. 2016;138(6):e20163128.CrossRef
Metadata
Title
Comparative study between Fenton and intergrowth 21 charts in a sample of Lebanese premature babies
Authors
Marie Samarani
Gianna Restom
Joelle Mardini
Georges Abi Fares
Souheil Hallit
Marie-Claude Fadous Khalife
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Premature Birth
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-1968-7

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue