Skip to main content
Top
Published in: BMC Pediatrics 1/2020

Open Access 01-12-2020 | Cytokines | Research article

Systemic TNFα correlates with residual β-cell function in children and adolescents newly diagnosed with type 1 diabetes

Authors: Anne Julie Overgaard, Jens Otto Broby Madsen, Flemming Pociot, Jesper Johannesen, Joachim Størling

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Type 1 diabetes (T1D) is caused by immune-mediated destruction of the β-cells. After initiation of insulin therapy many patients experience a period of improved residual β-cell function leading to partial disease remission. Cytokines are important immune-modulatory molecules and contribute to β-cell damage in T1D. The patterns of systemic circulating cytokines during T1D remission are not clear but may constitute biomarkers of disease status and progression. In this study, we investigated if the plasma levels of various pro- and anti-inflammatory cytokines around time of diagnosis were predictors of remission and residual β-cell function in children with T1D followed for one year after disease onset.

Methods

In a cohort of 63 newly diagnosed children (33% females) with T1D with a mean age of 11.3 years (3.3–17.7), ten cytokines were measured of which eight were detectable in plasma samples by Mesoscale Discovery multiplex technology at study start and after 6 and 12 months. Linear regression models were used to evaluate association of cytokines with stimulated C-peptide.

Results

Systemic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-2 and IL-6 inversely correlated with stimulated C-peptide levels over the entire study (P < 0.05). The concentrations of TNFα and IL-10 at study start predicted stimulated C-peptide level at 6 months (P = 0.011 and P = 0.043, respectively, adjusted for sex, age, HbA1c and stage of puberty).

Conclusions

In recent-onset T1D, systemic cytokine levels, and in particular that of TNFα, correlate with residual β-cell function and may serve as prognostic biomarkers of disease remission and progression to optimize treatment strategies.

Trial Registration

The study was performed according to the criteria of the Helsinki II Declaration and was approved by the Danish Capital Region Ethics Committee on Biomedical Research Ethics (journal number H-3-2014-052). The parents of all participants gave written consent.
Literature
1.
go back to reference Greenbaum CJ, Speake C, Krischer J, Buckner J, Gottlieb PA, Schatz DA, Herold KC, Atkinson MA. Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience. Diabetes. 2018;67:1216–25.PubMedPubMedCentral Greenbaum CJ, Speake C, Krischer J, Buckner J, Gottlieb PA, Schatz DA, Herold KC, Atkinson MA. Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience. Diabetes. 2018;67:1216–25.PubMedPubMedCentral
2.
go back to reference Madsbad S. Prevalence of residual B cell function and its metabolic consequences in Type 1 (insulin-dependent) diabetes. Diabetologia. 1983;24:141–7.PubMed Madsbad S. Prevalence of residual B cell function and its metabolic consequences in Type 1 (insulin-dependent) diabetes. Diabetologia. 1983;24:141–7.PubMed
3.
go back to reference Berchtold LA, Prause M, Storling J, Mandrup-Poulsen T. Cytokines and Pancreatic beta-Cell Apoptosis. Adv Clin Chem. 2016;75:99–158.PubMed Berchtold LA, Prause M, Storling J, Mandrup-Poulsen T. Cytokines and Pancreatic beta-Cell Apoptosis. Adv Clin Chem. 2016;75:99–158.PubMed
4.
go back to reference Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.PubMed Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.PubMed
5.
go back to reference Fitas AL, Martins C, Borrego LM, Lopes L, Jorns A, Lenzen S, Limbert C. Immune cell and cytokine patterns in children with type 1 diabetes mellitus undergoing a remission phase: A longitudinal study. Pediatr Diabetes. 2018;19:963–71.PubMed Fitas AL, Martins C, Borrego LM, Lopes L, Jorns A, Lenzen S, Limbert C. Immune cell and cytokine patterns in children with type 1 diabetes mellitus undergoing a remission phase: A longitudinal study. Pediatr Diabetes. 2018;19:963–71.PubMed
6.
go back to reference Madsen JOB, Jorgensen NR, Pociot F, Johannesen J. Bone turnover markers in children and adolescents with type 1 diabetes-A systematic review. Pediatr Diabetes. 2019;20:510–22.PubMed Madsen JOB, Jorgensen NR, Pociot F, Johannesen J. Bone turnover markers in children and adolescents with type 1 diabetes-A systematic review. Pediatr Diabetes. 2019;20:510–22.PubMed
7.
8.
go back to reference Plesser YM, Doljanski F, Polliack A. Alteration in lymphocyte surface morphology and membrane fluidity induced by cholesterol depletion. Cell Mol Biol Incl Cyto Enzymol. 1979;25:203–6.PubMed Plesser YM, Doljanski F, Polliack A. Alteration in lymphocyte surface morphology and membrane fluidity induced by cholesterol depletion. Cell Mol Biol Incl Cyto Enzymol. 1979;25:203–6.PubMed
9.
go back to reference Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S, Quattrin T. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32:1244–9.PubMedPubMedCentral Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S, Quattrin T. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32:1244–9.PubMedPubMedCentral
10.
go back to reference Schloot NC, Hanifi-Moghaddam P, Aabenhus-Andersen N, Alizadeh BZ, Saha MT, Knip M, Devendra D, Wilkin T, Bonifacio E, Roep BO, Kolb H, Mandrup-Poulsen T. Association of immune mediators at diagnosis of Type 1 diabetes with later clinical remission. Diabet Med. 2007;24:512–20.PubMed Schloot NC, Hanifi-Moghaddam P, Aabenhus-Andersen N, Alizadeh BZ, Saha MT, Knip M, Devendra D, Wilkin T, Bonifacio E, Roep BO, Kolb H, Mandrup-Poulsen T. Association of immune mediators at diagnosis of Type 1 diabetes with later clinical remission. Diabet Med. 2007;24:512–20.PubMed
11.
go back to reference Kaas A, Pfleger C, Kharagjitsingh AV, Schloot NC, Hansen L, Buschard K, Koeleman BP, Roep BO, Mortensen HB, Alizadeh BZ. Association between age, IL-10, IFNgamma, stimulated C-peptide and disease progression in children with newly diagnosed Type 1 diabetes. Diabet Med. 2012;29:734–41.PubMed Kaas A, Pfleger C, Kharagjitsingh AV, Schloot NC, Hansen L, Buschard K, Koeleman BP, Roep BO, Mortensen HB, Alizadeh BZ. Association between age, IL-10, IFNgamma, stimulated C-peptide and disease progression in children with newly diagnosed Type 1 diabetes. Diabet Med. 2012;29:734–41.PubMed
12.
go back to reference Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180:5771–7. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180:5771–7.
13.
14.
go back to reference Mishra PK, Patel N, Wu W, Bleich D, Gause WC. Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol. 2013;6:297–308.PubMed Mishra PK, Patel N, Wu W, Bleich D, Gause WC. Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol. 2013;6:297–308.PubMed
15.
go back to reference Xu A, Zhu W, Li T, Li X, Cheng J, Li C, Yi P, Liu L. Interleukin-10 gene transfer into insulin-producing beta cells protects against diabetes in non-obese diabetic mice. Mol Med Rep. 2015;12:3881–9.PubMed Xu A, Zhu W, Li T, Li X, Cheng J, Li C, Yi P, Liu L. Interleukin-10 gene transfer into insulin-producing beta cells protects against diabetes in non-obese diabetic mice. Mol Med Rep. 2015;12:3881–9.PubMed
Metadata
Title
Systemic TNFα correlates with residual β-cell function in children and adolescents newly diagnosed with type 1 diabetes
Authors
Anne Julie Overgaard
Jens Otto Broby Madsen
Flemming Pociot
Jesper Johannesen
Joachim Størling
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02339-8

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue