Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Obesity | Research article

Sex-related change in BMI of 15- to 16-year-old Norwegian girls in cross-sectional studies in 2002 and 2017

Authors: Asborg A. Bjertnaes, Jacob H. Grundt, Petur B. Juliusson, Trond J. Markestad, Tor A. Strand, Mads N. Holten-Andersen

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

The prevalence of overweight and obesity (OWOB) has stabilized in some countries, but a portion of children with high body mass index (BMI) may have become heavier. This study aimed to describe the distributions of BMI and the point prevalence of OWOB in Norwegian adolescents in 2002 and 2017.

Methods

A cross-sectional study involving 15- to 16-year-old adolescents in Oppland, Norway, was undertaken in 2002 and 2017. We calculated their BMI, BMI z-scores (BMIz), and the prevalence of OWOB.

Results

The mean BMI increased from 20.7 to 21.4 (p < 0.001) for girls but remained unchanged at 21.5 vs 21.4 (p = 0.80) for boys. The prevalence of OWOB increased from 9 to 14% among girls (difference 5, 95% CI: 2, 8) and from 17 to 20% among boys (difference 3, 95% CI: − 1, 6%). The BMI density plots revealed similar shapes at both time points for both sexes, but the distribution for girls shifted to the right from 2002 to 2017.

Conclusion

Contrary to previous knowledge, we found that the increase in OWOB presented a uniform shift in the entire BMI distribution for 15–16-year-old Norwegian girls and was not due to a larger shift in a specific subpopulation in the upper percentiles.
Literature
1.
go back to reference Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):2430–40.PubMedCrossRef Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):2430–40.PubMedCrossRef
2.
3.
go back to reference Kvaavik E, Tell GS, Klepp K-I. Predictors and tracking of body mass index from adolescence into adulthood: follow-up of 18 to 20 years in the Oslo youth study. Archives of pediatrics & adolescent medicine. 2003;157(12):1212–8.CrossRef Kvaavik E, Tell GS, Klepp K-I. Predictors and tracking of body mass index from adolescence into adulthood: follow-up of 18 to 20 years in the Oslo youth study. Archives of pediatrics & adolescent medicine. 2003;157(12):1212–8.CrossRef
6.
go back to reference Schonbeck Y, van Dommelen P, HiraSing RA, van Buuren S. Thinness in the era of obesity: trends in children and adolescents in the Netherlands since 1980. Eur J Pub Health. 2015;25(2):268–73.CrossRef Schonbeck Y, van Dommelen P, HiraSing RA, van Buuren S. Thinness in the era of obesity: trends in children and adolescents in the Netherlands since 1980. Eur J Pub Health. 2015;25(2):268–73.CrossRef
7.
go back to reference Schaffrath Rosario A, Kurth BM, Stolzenberg H, Ellert U, Neuhauser H. Body mass index percentiles for children and adolescents in Germany based on a nationally representative sample (KiGGS 2003–2006). Eur J Clin Nutr. 2010;64:341.PubMedCrossRef Schaffrath Rosario A, Kurth BM, Stolzenberg H, Ellert U, Neuhauser H. Body mass index percentiles for children and adolescents in Germany based on a nationally representative sample (KiGGS 2003–2006). Eur J Clin Nutr. 2010;64:341.PubMedCrossRef
8.
go back to reference Bjornelv S, Lydersen S, Mykletun A, Holmen TL. Changes in BMI-distribution from 1966-69 to 1995-97 in adolescents. The young-HUNT study, Norway. BMC Public Health. 2007;7:279.PubMedPubMedCentralCrossRef Bjornelv S, Lydersen S, Mykletun A, Holmen TL. Changes in BMI-distribution from 1966-69 to 1995-97 in adolescents. The young-HUNT study, Norway. BMC Public Health. 2007;7:279.PubMedPubMedCentralCrossRef
9.
go back to reference Ekblom O, Oddsson K, Ekblom B. Prevalence and regional differences in overweight in 2001 and trends in BMI distribution in Swedish children from 1987 to 2001. Scandinavian journal of public health. 2004;32(4):257–63.PubMedCrossRef Ekblom O, Oddsson K, Ekblom B. Prevalence and regional differences in overweight in 2001 and trends in BMI distribution in Swedish children from 1987 to 2001. Scandinavian journal of public health. 2004;32(4):257–63.PubMedCrossRef
10.
go back to reference Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. Jama. 2012;307(5):483–90.PubMedPubMedCentralCrossRef Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. Jama. 2012;307(5):483–90.PubMedPubMedCentralCrossRef
11.
go back to reference Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015-2016. Jama. 2018. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015-2016. Jama. 2018.
12.
go back to reference Ward ZJ, Long MW, Resch SC, Giles CM, Cradock AL, Gortmaker SL. Simulation of growth trajectories of childhood obesity into adulthood. N Engl J Med. 2017;377(22):2145–53.PubMedCrossRefPubMedCentral Ward ZJ, Long MW, Resch SC, Giles CM, Cradock AL, Gortmaker SL. Simulation of growth trajectories of childhood obesity into adulthood. N Engl J Med. 2017;377(22):2145–53.PubMedCrossRefPubMedCentral
14.
go back to reference Li C, Engstrom G, Hedblad B, Calling S, Berglund G, Janzon L. Sex differences in the relationships between BMI, WHR and incidence of cardiovascular disease: a population-based cohort study. Int J Obes. 2006;30(12):1775–81.CrossRef Li C, Engstrom G, Hedblad B, Calling S, Berglund G, Janzon L. Sex differences in the relationships between BMI, WHR and incidence of cardiovascular disease: a population-based cohort study. Int J Obes. 2006;30(12):1775–81.CrossRef
16.
go back to reference Juliusson PB, Roelants M, Nordal E, Furevik L, Eide GE, Moster D, et al. Growth references for 0-19 year-old Norwegian children for length/height, weight, body mass index and head circumference. Ann Hum Biol. 2013;40(3):220–7.PubMedCrossRef Juliusson PB, Roelants M, Nordal E, Furevik L, Eide GE, Moster D, et al. Growth references for 0-19 year-old Norwegian children for length/height, weight, body mass index and head circumference. Ann Hum Biol. 2013;40(3):220–7.PubMedCrossRef
17.
go back to reference Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric obesity. 2012;7(4):284–94.PubMedCrossRef Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric obesity. 2012;7(4):284–94.PubMedCrossRef
18.
go back to reference Levin KA, Currie C. Adolescent toothbrushing and the home environment: sociodemographic factors, family relationships and mealtime routines and disorganisation. Community Dent Oral Epidemiol. 2010;38(1):10–8.PubMedCrossRef Levin KA, Currie C. Adolescent toothbrushing and the home environment: sociodemographic factors, family relationships and mealtime routines and disorganisation. Community Dent Oral Epidemiol. 2010;38(1):10–8.PubMedCrossRef
19.
go back to reference Flegal KM, Troiano RP. Changes in the distribution of body mass index of adults and children in the US population. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2000;24(7):807–18.CrossRef Flegal KM, Troiano RP. Changes in the distribution of body mass index of adults and children in the US population. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2000;24(7):807–18.CrossRef
20.
go back to reference Kautiainen S, Koivisto A-M, Koivusilta L, Lintonen T, Virtanen SM, Rimpelä A. Sociodemographic factors and a secular trend of adolescent overweight in Finland. Int J Pediatr Obes. 2009;4(4):360–70.PubMedCrossRef Kautiainen S, Koivisto A-M, Koivusilta L, Lintonen T, Virtanen SM, Rimpelä A. Sociodemographic factors and a secular trend of adolescent overweight in Finland. Int J Pediatr Obes. 2009;4(4):360–70.PubMedCrossRef
21.
go back to reference Chaput JP, Klingenberg L, Astrup A, Sjödin AM. Modern sedentary activities promote overconsumption of food in our current obesogenic environment. Obes Rev. 2011;12(5):e12–20.PubMedCrossRef Chaput JP, Klingenberg L, Astrup A, Sjödin AM. Modern sedentary activities promote overconsumption of food in our current obesogenic environment. Obes Rev. 2011;12(5):e12–20.PubMedCrossRef
22.
go back to reference Norwegian Institute of Public Health. Public Health Report: Health Status in Norway. Oslo, Norwegian Institute of Public Health. 2018. Norwegian Institute of Public Health. Public Health Report: Health Status in Norway. Oslo, Norwegian Institute of Public Health. 2018.
23.
go back to reference Handeland K, Kjellevold M, Wik Markhus M, Eide Graff I, Frøyland L, Lie Ø, et al. A diet score assessing Norwegian Adolescents' adherence to dietary recommendations-development and test-retest reproducibility of the score. Nutrients. 2016;8(8):467.PubMedCentralCrossRef Handeland K, Kjellevold M, Wik Markhus M, Eide Graff I, Frøyland L, Lie Ø, et al. A diet score assessing Norwegian Adolescents' adherence to dietary recommendations-development and test-retest reproducibility of the score. Nutrients. 2016;8(8):467.PubMedCentralCrossRef
25.
go back to reference Guinhouya B, Samouda H, De Beaufort C. Level of physical activity among children and adolescents in Europe: a review of physical activity assessed objectively by accelerometry. Public Health. 2013;127(4):301–11.PubMedCrossRef Guinhouya B, Samouda H, De Beaufort C. Level of physical activity among children and adolescents in Europe: a review of physical activity assessed objectively by accelerometry. Public Health. 2013;127(4):301–11.PubMedCrossRef
28.
go back to reference Bjornelv S, Lydersen S, Holmen J, Lund Nilsen TI, Holmen TL. Sex differences in time trends for overweight and obesity in adolescents: the young-HUNT study. Scandinavian journal of public health. 2009;37(8):881–9.PubMedCrossRef Bjornelv S, Lydersen S, Holmen J, Lund Nilsen TI, Holmen TL. Sex differences in time trends for overweight and obesity in adolescents: the young-HUNT study. Scandinavian journal of public health. 2009;37(8):881–9.PubMedCrossRef
29.
go back to reference Abarca-Gómez L, Abdeen Z, Hamid Z, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef Abarca-Gómez L, Abdeen Z, Hamid Z, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef
30.
go back to reference Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766–81.PubMedPubMedCentralCrossRef Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766–81.PubMedPubMedCentralCrossRef
32.
go back to reference Barbour-Tuck E, Erlandson MC, Johnson W, Muhajarine N, Foulds H, Baxter-Jones ADG. At what age do normal weight Canadian children become overweight adults? Differences according to sex and metric. Ann Hum Biol. 2018;45(6–8):478–85.PubMedCrossRef Barbour-Tuck E, Erlandson MC, Johnson W, Muhajarine N, Foulds H, Baxter-Jones ADG. At what age do normal weight Canadian children become overweight adults? Differences according to sex and metric. Ann Hum Biol. 2018;45(6–8):478–85.PubMedCrossRef
33.
go back to reference Labayen I, Ruiz JR, Huybrechts I, Ortega FB, Rodriguez G, Dehenauw S, et al. Sexual dimorphism in the early life programming of serum leptin levels in European adolescents: the HELENA study. J Clin Endocrinol Metab. 2011;96(8):E1330–4.PubMedCrossRef Labayen I, Ruiz JR, Huybrechts I, Ortega FB, Rodriguez G, Dehenauw S, et al. Sexual dimorphism in the early life programming of serum leptin levels in European adolescents: the HELENA study. J Clin Endocrinol Metab. 2011;96(8):E1330–4.PubMedCrossRef
34.
go back to reference Epel E, Lapidus R, McEwen B, Brownell KJP. Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology. 2001;26(1):37–49.PubMedCrossRef Epel E, Lapidus R, McEwen B, Brownell KJP. Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology. 2001;26(1):37–49.PubMedCrossRef
35.
go back to reference Fuller-Thomson E, Sinclair DA, Brennenstuhl S. Carrying the pain of abuse: gender-specific findings on the relationship between childhood physical abuse and obesity in adulthood. Obesity Facts. 2013;6(4):325–36.PubMedPubMedCentralCrossRef Fuller-Thomson E, Sinclair DA, Brennenstuhl S. Carrying the pain of abuse: gender-specific findings on the relationship between childhood physical abuse and obesity in adulthood. Obesity Facts. 2013;6(4):325–36.PubMedPubMedCentralCrossRef
36.
go back to reference Grundt J, Nakling J, Eide GE, et al. Possible relation between maternal consumption of added sugar and sugar-sweetened beverages and birth weight–time trends in a population. BMC Public Health. 2012;12(1):901.PubMedPubMedCentralCrossRef Grundt J, Nakling J, Eide GE, et al. Possible relation between maternal consumption of added sugar and sugar-sweetened beverages and birth weight–time trends in a population. BMC Public Health. 2012;12(1):901.PubMedPubMedCentralCrossRef
37.
go back to reference Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ. 2005;331(7522):929.PubMedPubMedCentralCrossRef Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ. 2005;331(7522):929.PubMedPubMedCentralCrossRef
38.
go back to reference Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, Cao XG, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev. 2011;12(7):525–42.PubMedCrossRef Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, Cao XG, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev. 2011;12(7):525–42.PubMedCrossRef
39.
go back to reference Labayen I, Ruiz JR, Vicente-Rodríguez G, Turck D, Rodríguez G, Meirhaeghe A, et al. Early life programming of abdominal adiposity in adolescents: the HELENA study. Diabetes Care. 2009;32(11):2120–2.PubMedPubMedCentralCrossRef Labayen I, Ruiz JR, Vicente-Rodríguez G, Turck D, Rodríguez G, Meirhaeghe A, et al. Early life programming of abdominal adiposity in adolescents: the HELENA study. Diabetes Care. 2009;32(11):2120–2.PubMedPubMedCentralCrossRef
40.
go back to reference Labayen I, Moreno LA, Blay MG, Blay VA, Mesana MI, Gonzalez-Gross M, et al. Early programming of body composition and fat distribution in adolescents. J Nutr. 2006;136(1):147–52.PubMedCrossRef Labayen I, Moreno LA, Blay MG, Blay VA, Mesana MI, Gonzalez-Gross M, et al. Early programming of body composition and fat distribution in adolescents. J Nutr. 2006;136(1):147–52.PubMedCrossRef
42.
go back to reference Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes. 2013;37(8):1036.CrossRef Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes. 2013;37(8):1036.CrossRef
43.
go back to reference Iszatt N, Stigum H, Govarts E, Murinova LP, Schoeters G, Trnovec T, et al. Perinatal exposure to dioxins and dioxin-like compounds and infant growth and body mass index at seven years: a pooled analysis of three European birth cohorts. Environ Int. 2016;94:399–407.PubMedCrossRef Iszatt N, Stigum H, Govarts E, Murinova LP, Schoeters G, Trnovec T, et al. Perinatal exposure to dioxins and dioxin-like compounds and infant growth and body mass index at seven years: a pooled analysis of three European birth cohorts. Environ Int. 2016;94:399–407.PubMedCrossRef
45.
go back to reference Mead MN. Contaminants in human milk: weighing the risks against the benefits of breastfeeding. Environ Health Perspect. 2008;116(10):A427–34.PubMed Mead MN. Contaminants in human milk: weighing the risks against the benefits of breastfeeding. Environ Health Perspect. 2008;116(10):A427–34.PubMed
46.
go back to reference Bjertnæs AA, Grundt JH, Donkor HM, Juliusson PB, Wentzel-Larsen T, Vaktskjold A, et al. No significant associations between breastfeeding practices and overweight in 8-year-old children. Acta Paediatrica. 2019;0:1–6. https://doi.org/10.1111/apa.14937. Bjertnæs AA, Grundt JH, Donkor HM, Juliusson PB, Wentzel-Larsen T, Vaktskjold A, et al. No significant associations between breastfeeding practices and overweight in 8-year-old children. Acta Paediatrica. 2019;0:1–6. https://​doi.​org/​10.​1111/​apa.​14937.
48.
go back to reference Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90.PubMedCrossRef Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90.PubMedCrossRef
49.
go back to reference He J, Cai Z, Fan X. How accurate is the prevalence of overweight and obesity in children and adolescents derived from self-reported data? A meta-analysis. Public Health Nutr. 2018;21(10):1865–73.PubMedCrossRef He J, Cai Z, Fan X. How accurate is the prevalence of overweight and obesity in children and adolescents derived from self-reported data? A meta-analysis. Public Health Nutr. 2018;21(10):1865–73.PubMedCrossRef
50.
go back to reference Gebremariam MK, Frost Andersen L, Bjelland M, Bergh IH, Totland TH, Ommundsen Y, et al. Are weight-related attitudes and behaviours associated with the accuracy of BMI derived from self-reported weight and height among 13-year-olds? Scandinavian journal of public health. 2015;43(2):130–7.PubMedCrossRef Gebremariam MK, Frost Andersen L, Bjelland M, Bergh IH, Totland TH, Ommundsen Y, et al. Are weight-related attitudes and behaviours associated with the accuracy of BMI derived from self-reported weight and height among 13-year-olds? Scandinavian journal of public health. 2015;43(2):130–7.PubMedCrossRef
51.
go back to reference Lassale C, Péneau S, Touvier M, Julia C, Galan P, Hercberg S, et al. Validity of web-based self-reported weight and height: results of the Nutrinet-Santé study. J Med Internet Res. 2013;15(8):e152.PubMedPubMedCentralCrossRef Lassale C, Péneau S, Touvier M, Julia C, Galan P, Hercberg S, et al. Validity of web-based self-reported weight and height: results of the Nutrinet-Santé study. J Med Internet Res. 2013;15(8):e152.PubMedPubMedCentralCrossRef
52.
go back to reference Freedman DS, Kit BK, Ford ES. Are the recent secular increases in waist circumference among children and adolescents independent of changes in BMI? PLoS One. 2015;10(10):e0141056.PubMedPubMedCentralCrossRef Freedman DS, Kit BK, Ford ES. Are the recent secular increases in waist circumference among children and adolescents independent of changes in BMI? PLoS One. 2015;10(10):e0141056.PubMedPubMedCentralCrossRef
53.
go back to reference Bratke H, Bruserud IS, Brannsether B, Aßmus J, Bjerknes R, Roelants M, et al. Timing of menarche in Norwegian girls: associations with body mass index, waist circumference and skinfold thickness. BMC Pediatr. 2017;17(1):138.PubMedPubMedCentralCrossRef Bratke H, Bruserud IS, Brannsether B, Aßmus J, Bjerknes R, Roelants M, et al. Timing of menarche in Norwegian girls: associations with body mass index, waist circumference and skinfold thickness. BMC Pediatr. 2017;17(1):138.PubMedPubMedCentralCrossRef
54.
go back to reference Wijnhoven TM, van Raaij JM, Spinelli A, Starc G, Hassapidou M, Spiroski I, et al. WHO European childhood obesity surveillance initiative: body mass index and level of overweight among 6-9-year-old children from school year 2007/2008 to school year 2009/2010. BMC Public Health. 2014;14:806.PubMedPubMedCentralCrossRef Wijnhoven TM, van Raaij JM, Spinelli A, Starc G, Hassapidou M, Spiroski I, et al. WHO European childhood obesity surveillance initiative: body mass index and level of overweight among 6-9-year-old children from school year 2007/2008 to school year 2009/2010. BMC Public Health. 2014;14:806.PubMedPubMedCentralCrossRef
Metadata
Title
Sex-related change in BMI of 15- to 16-year-old Norwegian girls in cross-sectional studies in 2002 and 2017
Authors
Asborg A. Bjertnaes
Jacob H. Grundt
Petur B. Juliusson
Trond J. Markestad
Tor A. Strand
Mads N. Holten-Andersen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1790-2

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue