Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Thickness changes in the corneal epithelium and Bowman’s layer after overnight wear of silicone hydrogel contact lenses

Authors: Fan Lu, Aizhu Tao, Weiwei Tao, Xiran Zhuang, Meixiao Shen

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

To investigate thickness changes in the corneal epithelium and Bowman’s layer after overnight silicone hydrogel contact lens (CL) wear by using ultra-high resolution optical coherence tomography (UHROCT).

Methods

Eleven subjects without CL wearing history were recruited for this study. An UHROCT was used to measure the thickness of the epithelium (ET), Bowman’s layer (BT), stroma (ST), and total cornea (CCT) at the center of both eyes. A silicone hydrogel CL was inserted in the right eye of each subject, and the fellow non-CL wearing left eye served as the control. The lens was inserted at 9:30 pm and removed at 8:00 am the next morning. The subjects were evaluated at 9:00 pm (baseline), 9:30 pm (lens insertion), 10:00 pm (before sleep), 7:00 am (waking), 7:30 am, and 8:00 am (lens removal).

Results

Compared to the lens insertion level, the ET of the lens-wearing eye increased by 5.73% at eye opening (P = 0.001). The ET of the non-CL wearing eye and the BT in both eyes did not change after overnight CL wear. Compared to baseline, the CCT of the lens-wearing eye increased by 2.87% upon waking (P = 0.003) and recovered 30 min later (P = 0.555). In contrast, compared to baseline, the CCT of the non-CL wearing eye did not increase upon waking (P = 0.105).

Conclusions

By using UHROCT, we found that overnight CL wear induced different swelling responses in the various sublayers of the cornea.

Trial registration

Retrospectively registered. Registration number: ChiCTR1800015115​. Registered 07 March 2018.
Literature
1.
go back to reference Mishima S. Clinical investigations on the corneal endothelium XXXVIII Edward Jackson memorial lecture. Am J Ophthalmol. 1992;93:1–29.CrossRef Mishima S. Clinical investigations on the corneal endothelium XXXVIII Edward Jackson memorial lecture. Am J Ophthalmol. 1992;93:1–29.CrossRef
2.
go back to reference Steffen RB, Schnider CM. The impact of silicone hydrogel materials on overnight corneal swelling. Eye Contact Lens. 2007;33(3):115–20.CrossRef Steffen RB, Schnider CM. The impact of silicone hydrogel materials on overnight corneal swelling. Eye Contact Lens. 2007;33(3):115–20.CrossRef
3.
go back to reference Ladage PM, Jester JV, Petroll WM, Bergmanson JP, Cavanagh HD. Role of oxygen in corneal epithelial homeostasis during extended contact lens wear. Eye Contact Lens. 2003;29:S2–6.CrossRef Ladage PM, Jester JV, Petroll WM, Bergmanson JP, Cavanagh HD. Role of oxygen in corneal epithelial homeostasis during extended contact lens wear. Eye Contact Lens. 2003;29:S2–6.CrossRef
4.
go back to reference Wang J, Fonn D, Simpson TL, Jones L. The measurement of corneal epithelial thickness in response to hypoxia using optical coherence tomography. Am J Ophthalmol. 2002;133:315–9.CrossRef Wang J, Fonn D, Simpson TL, Jones L. The measurement of corneal epithelial thickness in response to hypoxia using optical coherence tomography. Am J Ophthalmol. 2002;133:315–9.CrossRef
5.
go back to reference Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci. 1984;25:1161–7.PubMed Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci. 1984;25:1161–7.PubMed
6.
go back to reference Bonanno JA, Stickel T, Nguyen T, Biehl T, Carter D, Benjamin WJ, et al. Estimation of human corneal oxygen consumption by noninvasive measurement of tear oxygen tension while wearing hydrogel lenses. Invest Ophthalmol. Vis. Sci. 2002;43:371–6. Bonanno JA, Stickel T, Nguyen T, Biehl T, Carter D, Benjamin WJ, et al. Estimation of human corneal oxygen consumption by noninvasive measurement of tear oxygen tension while wearing hydrogel lenses. Invest Ophthalmol. Vis. Sci. 2002;43:371–6.
7.
go back to reference Schein OD, Glynn RJ, Poggio EC, Seddon JM, Kenyon KR. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. A case-control study. N Engl J Med. 1989;321:773–8.CrossRef Schein OD, Glynn RJ, Poggio EC, Seddon JM, Kenyon KR. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. A case-control study. N Engl J Med. 1989;321:773–8.CrossRef
8.
go back to reference Lim C, Carnt NA, Farook M, Lam J, Tan DT, Mehta JS, et al. Risk factors for contact lens-related microbial keratitis in Singapore. Eye. 2016;30(3):447–55.CrossRef Lim C, Carnt NA, Farook M, Lam J, Tan DT, Mehta JS, et al. Risk factors for contact lens-related microbial keratitis in Singapore. Eye. 2016;30(3):447–55.CrossRef
9.
go back to reference Guillon M. Are silicone hydrogel contact lenses more comfortable than hydrogel contact lenses? Eye Contact Lens. 2013;39:86–92.CrossRef Guillon M. Are silicone hydrogel contact lenses more comfortable than hydrogel contact lenses? Eye Contact Lens. 2013;39:86–92.CrossRef
10.
go back to reference Dillehay SM, Miller MB. Performance of lotrafilcon B silicne hydrogel contact lenses in experienced low-Dk/t daily lens wearers. Eye Contact Lens. 2007;33:272–7.CrossRef Dillehay SM, Miller MB. Performance of lotrafilcon B silicne hydrogel contact lenses in experienced low-Dk/t daily lens wearers. Eye Contact Lens. 2007;33:272–7.CrossRef
11.
go back to reference Long B, Schweizer H, Bleshoy H, Zeri F. Expanding your use of silicone hydrogel contact lenses: using lotrafilcon a for daily wear. Eye Contact Lens. 2009;35:59–64.CrossRef Long B, Schweizer H, Bleshoy H, Zeri F. Expanding your use of silicone hydrogel contact lenses: using lotrafilcon a for daily wear. Eye Contact Lens. 2009;35:59–64.CrossRef
12.
go back to reference Kuerten D, Plange N, Koch EC, Koutsonas A, Walter P, Fuest M. Central corneal thickness determination in corneal edema using ultrasound pachymetry, a Scheimpflug camera, and anterior segment OCT. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):1105–9.CrossRef Kuerten D, Plange N, Koch EC, Koutsonas A, Walter P, Fuest M. Central corneal thickness determination in corneal edema using ultrasound pachymetry, a Scheimpflug camera, and anterior segment OCT. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):1105–9.CrossRef
13.
go back to reference Fonn D, Toit R, Simpson TL, Vega JA, Situ P, Chalmers RL. Sympathetic swelling response of the control eye to soft lenses in the other eye. Invest Ophthalmol Vis Sci. 1999;40:3116–21.PubMed Fonn D, Toit R, Simpson TL, Vega JA, Situ P, Chalmers RL. Sympathetic swelling response of the control eye to soft lenses in the other eye. Invest Ophthalmol Vis Sci. 1999;40:3116–21.PubMed
14.
go back to reference Wang J, Fonn D, Simpson TL. Topographical thickness of the epithelium and total cornea after hydrogel and PMMA contact lens wear with eye closure. Invest Ophthalmol Vis Sci. 2003;44:1070–4.CrossRef Wang J, Fonn D, Simpson TL. Topographical thickness of the epithelium and total cornea after hydrogel and PMMA contact lens wear with eye closure. Invest Ophthalmol Vis Sci. 2003;44:1070–4.CrossRef
15.
go back to reference Ge L, Yuan Y, Shen M, Tao A, Wang J, Lu F. The role of axial resolution of optical coherence tomography on the measurement of corneal and epithelial thicknesses. Invest Ophthalmol Vis Sci. 2013;54:746–55.CrossRef Ge L, Yuan Y, Shen M, Tao A, Wang J, Lu F. The role of axial resolution of optical coherence tomography on the measurement of corneal and epithelial thicknesses. Invest Ophthalmol Vis Sci. 2013;54:746–55.CrossRef
16.
go back to reference Hutchings N, Simpson TL, Hyun C, Moayed AA, Hariri S, Sorbara L, et al. Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4579–84.CrossRef Hutchings N, Simpson TL, Hyun C, Moayed AA, Hariri S, Sorbara L, et al. Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4579–84.CrossRef
17.
go back to reference Tao A, Wang J, Chen Q, Shen M, Lu F, Dubow SR, et al. Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:3901–7.CrossRef Tao A, Wang J, Chen Q, Shen M, Lu F, Dubow SR, et al. Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:3901–7.CrossRef
18.
go back to reference Ge L, Shen M, Tao A, Wang J, Dou G, Lu F. Automatic segmentation of the central epithelium imaged with three optical coherence tomography devices. Eye Contact Lens. 2012;38:150–7.CrossRef Ge L, Shen M, Tao A, Wang J, Dou G, Lu F. Automatic segmentation of the central epithelium imaged with three optical coherence tomography devices. Eye Contact Lens. 2012;38:150–7.CrossRef
19.
go back to reference Dumbleton KA, Woods CA, Jones LW, Fonn D. Comfort and adaptation to silicone hydrogel lenses for daily wear. Eye Contact Lens. 2008;34:215–23.CrossRef Dumbleton KA, Woods CA, Jones LW, Fonn D. Comfort and adaptation to silicone hydrogel lenses for daily wear. Eye Contact Lens. 2008;34:215–23.CrossRef
20.
go back to reference Erdfelder E, Faul F, Buchner A. Gpower: a general power analysis program. Behav Res Methods Instrum Comput. 1996;28:1–11.CrossRef Erdfelder E, Faul F, Buchner A. Gpower: a general power analysis program. Behav Res Methods Instrum Comput. 1996;28:1–11.CrossRef
21.
go back to reference Golding TR, Bruce AS, Gaterell LL, Little SA, Macnamara J. Soft lens movement: effect of blink rate on lens setting. Acta Ophthalmol Scand. 1995;73:506–11.CrossRef Golding TR, Bruce AS, Gaterell LL, Little SA, Macnamara J. Soft lens movement: effect of blink rate on lens setting. Acta Ophthalmol Scand. 1995;73:506–11.CrossRef
22.
go back to reference Brennan NA, Lindsay RG, McCraw K, Young L, Bruce AS, Golding TR. Soft lens movement: temporal characteristics. Optom Vis Sci. 1994;71:359–63.CrossRef Brennan NA, Lindsay RG, McCraw K, Young L, Bruce AS, Golding TR. Soft lens movement: temporal characteristics. Optom Vis Sci. 1994;71:359–63.CrossRef
23.
go back to reference Shen M, Cui L, Riley C, Wang MR, Wang J. Characterizaton of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4091–7.CrossRef Shen M, Cui L, Riley C, Wang MR, Wang J. Characterizaton of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4091–7.CrossRef
24.
go back to reference Hall LA, Young G, Wolffsohn JS, Reliy C. The influence of corneo-scleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52:6801–6.CrossRef Hall LA, Young G, Wolffsohn JS, Reliy C. The influence of corneo-scleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52:6801–6.CrossRef
25.
go back to reference Tao A, Shao Y, Jiang H, Ye Y, Lu F, Shen M, et al. Entire thickness profiles of the epithelium and contact lens in vivo imaged with high-speed and high-resolution optical coherence tomography. Eye Contact Lens. 2013;39:329–34.CrossRef Tao A, Shao Y, Jiang H, Ye Y, Lu F, Shen M, et al. Entire thickness profiles of the epithelium and contact lens in vivo imaged with high-speed and high-resolution optical coherence tomography. Eye Contact Lens. 2013;39:329–34.CrossRef
26.
go back to reference Shen M, Wang MR, Wang J, Yuan Y, Chen F. Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography. Eye Contact Lens. 2010;36:73–6.CrossRef Shen M, Wang MR, Wang J, Yuan Y, Chen F. Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography. Eye Contact Lens. 2010;36:73–6.CrossRef
27.
go back to reference Wang J, Thomas J, Cox I, Rollins A. Noncontact measurements of central corneal epithelial and flap thickness after laser in situ Keratomileusis. Invest Ophthalmol Vis Sci. 2004;45:1812–6.CrossRef Wang J, Thomas J, Cox I, Rollins A. Noncontact measurements of central corneal epithelial and flap thickness after laser in situ Keratomileusis. Invest Ophthalmol Vis Sci. 2004;45:1812–6.CrossRef
28.
go back to reference Moezzi AM, Fonn D, Simpson TL. Overnight corneal swelling with silicone hydrogel contact lenses with high oxygen transmissibility. Eye Contact Lens. 2006;32:277–80.CrossRef Moezzi AM, Fonn D, Simpson TL. Overnight corneal swelling with silicone hydrogel contact lenses with high oxygen transmissibility. Eye Contact Lens. 2006;32:277–80.CrossRef
29.
go back to reference Stapleton F, Lakshmi KR, Kumar S, Sweenev DF, Rao GN, Holden BA. Overnight corneal swelling in symptomatic and asymptomatic contact lens wearers. CLAO J. 1998;24:169–74.PubMed Stapleton F, Lakshmi KR, Kumar S, Sweenev DF, Rao GN, Holden BA. Overnight corneal swelling in symptomatic and asymptomatic contact lens wearers. CLAO J. 1998;24:169–74.PubMed
30.
go back to reference Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman’s keratomileusis? J Refract Surg. 2008;24:S90–6.PubMed Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman’s keratomileusis? J Refract Surg. 2008;24:S90–6.PubMed
31.
go back to reference Hall LA, Young G, Wolffsohn JS, Riley C. The influence of corneoscleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52:6801–6.CrossRef Hall LA, Young G, Wolffsohn JS, Riley C. The influence of corneoscleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52:6801–6.CrossRef
Metadata
Title
Thickness changes in the corneal epithelium and Bowman’s layer after overnight wear of silicone hydrogel contact lenses
Authors
Fan Lu
Aizhu Tao
Weiwei Tao
Xiran Zhuang
Meixiao Shen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0956-2

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue