Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Area of the cone interdigitation zone in healthy Chinese adults and its correlation with macular volume

Authors: Ruiping Gu, Guohua Deng, Yi Jiang, Chunhui Jiang, Gezhi Xu

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

Numerous studies have suggested that the integrity of the cone interdigitation zone (IZ) could be considered to be a marker of photoreceptor damage and its recovery. However, little is known about the IZ in healthy eyes. Our present study was to measure the cone IZ area by optical coherence tomography (OCT), and determine its distribution in healthy adults.

Methods

This was a cross-sectional non-interventional study. We involved a group of 158 emmetropic or low myopic (from −3D to + 0.5D) eyes in 97 healthy adult volunteers. All subjects underwent thorough ophthalmologic examinations and the posterior pole was scanned by OCT. The cone IZ area in healthy adults and its correlation with macular volume and other factors was analyzed.

Results

The cone IZ was visible and clear in all 158 eyes, and the IZ area was successfully measured by 6 radical scans centered on the fovea. The mean IZ area was 30.22 ± 12.70 mm2, and ranged from 5.91 to 57.47 mm2. The IZ area exhibited a normal distribution (P = 0.635) with 95% confidence interval of 28.06–32.29 mm2. The IZ area was significantly correlated with the retinal and outer nuclear layer (ONL) volumes within the macula.

Conclusions

The cone IZ area could be measured using a commercially available OCT system. The IZ area showed high variability among healthy adults, and this might be related to the variability in the photoreceptor distribution in healthy adults.
Appendix
Available only for authorised users
Literature
2.
go back to reference Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102(2):217–29.CrossRefPubMed Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102(2):217–29.CrossRefPubMed
3.
go back to reference Huang Y, Cideciyan AV, Papastergiou GI, et al. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci. 1998;39(12):2405–16.PubMed Huang Y, Cideciyan AV, Papastergiou GI, et al. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci. 1998;39(12):2405–16.PubMed
4.
go back to reference Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011;31(8):1609–19.CrossRefPubMedPubMedCentral Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011;31(8):1609–19.CrossRefPubMedPubMedCentral
5.
go back to reference Srinivasan VJ, Monson BK, Wojtkowski M, et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49(4):1571–9.CrossRefPubMedPubMedCentral Srinivasan VJ, Monson BK, Wojtkowski M, et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49(4):1571–9.CrossRefPubMedPubMedCentral
6.
go back to reference Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology. 2014;121(8):1572–8.CrossRefPubMed Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology. 2014;121(8):1572–8.CrossRefPubMed
7.
go back to reference Park SJ, Woo SJ, Park KH, et al. Morphologic photoreceptor abnormality in occult macular dystrophy on spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(7):3673–9.CrossRefPubMed Park SJ, Woo SJ, Park KH, et al. Morphologic photoreceptor abnormality in occult macular dystrophy on spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(7):3673–9.CrossRefPubMed
8.
go back to reference Puche N, Querques G, Benhamou N, et al. High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy. Br J Ophthalmol. 2010;94(9):1190–6.CrossRefPubMed Puche N, Querques G, Benhamou N, et al. High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy. Br J Ophthalmol. 2010;94(9):1190–6.CrossRefPubMed
9.
go back to reference Ooto S, Hangai M, Takayama K, et al. High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. Ophthalmology. 2011;118(5):873–81.CrossRefPubMed Ooto S, Hangai M, Takayama K, et al. High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. Ophthalmology. 2011;118(5):873–81.CrossRefPubMed
10.
go back to reference Itoh Y, Inoue M, Rii T, et al. Significant correlation between visual acuity and recovery of foveal cone microstructures after macular hole surgery. Am J Ophthalmol. 2012;153(1):111–9.CrossRefPubMed Itoh Y, Inoue M, Rii T, et al. Significant correlation between visual acuity and recovery of foveal cone microstructures after macular hole surgery. Am J Ophthalmol. 2012;153(1):111–9.CrossRefPubMed
11.
go back to reference Itoh Y, Inoue M, Rii T, et al. Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure. Ophthalmology. 2012;119(7):1438–46.CrossRefPubMed Itoh Y, Inoue M, Rii T, et al. Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure. Ophthalmology. 2012;119(7):1438–46.CrossRefPubMed
12.
go back to reference Rii T, Itoh Y, Inoue M, Hirakata A. Foveal cone outer segment tips line and disruption artifacts in spectral-domain optical coherence tomographic images of normal eyes. Am J Ophthalmol. 2012;153(3):524–9.CrossRefPubMed Rii T, Itoh Y, Inoue M, Hirakata A. Foveal cone outer segment tips line and disruption artifacts in spectral-domain optical coherence tomographic images of normal eyes. Am J Ophthalmol. 2012;153(3):524–9.CrossRefPubMed
13.
go back to reference Jacobsen AG, Bendtsen MD, Vorum H, et al. Normal value ranges for central retinal thickness asymmetry in healthy Caucasian adults measured by SPECTRALIS SD-OCT posterior pole asymmetry analysis. Invest Ophthalmol Vis Sci. 2015;56(6):3875–82.CrossRefPubMed Jacobsen AG, Bendtsen MD, Vorum H, et al. Normal value ranges for central retinal thickness asymmetry in healthy Caucasian adults measured by SPECTRALIS SD-OCT posterior pole asymmetry analysis. Invest Ophthalmol Vis Sci. 2015;56(6):3875–82.CrossRefPubMed
14.
go back to reference Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). Am J Ophthalmol. 2009;148(2):266–71.CrossRefPubMed Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). Am J Ophthalmol. 2009;148(2):266–71.CrossRefPubMed
15.
go back to reference Xu D, Yuan A, Kaiser PK, et al. A novel segmentation algorithm for volumetric analysis of macular hole boundaries identified with optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(1):163–9.CrossRefPubMed Xu D, Yuan A, Kaiser PK, et al. A novel segmentation algorithm for volumetric analysis of macular hole boundaries identified with optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(1):163–9.CrossRefPubMed
16.
go back to reference Oh J, Smiddy WE, Flynn HJ, et al. Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci. 2010;51(3):1651–8.CrossRefPubMed Oh J, Smiddy WE, Flynn HJ, et al. Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci. 2010;51(3):1651–8.CrossRefPubMed
17.
go back to reference Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497–523.CrossRefPubMed Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497–523.CrossRefPubMed
18.
go back to reference Dorey CK, Wu G, Ebenstein D, et al. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30(8):1691–9.PubMed Dorey CK, Wu G, Ebenstein D, et al. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30(8):1691–9.PubMed
Metadata
Title
Area of the cone interdigitation zone in healthy Chinese adults and its correlation with macular volume
Authors
Ruiping Gu
Guohua Deng
Yi Jiang
Chunhui Jiang
Gezhi Xu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0862-7

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue