Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Evaluation of peripapillary choroidal distribution in children by enhanced depth imaging optical coherence tomography

Authors: Yi Zha, Jinfei Zhuang, Yixia Du, Jianqiu Cai, Haihua Zheng

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

To evaluate the peripapillary choroidal thickness (PPCT) in Chinese children aged 6 to 12 years old and to analyze correlative factors.

Methods

PPCT was measured with enhanced depth imaging optical coherence tomography (EDI-OCT) in 154 children (76 myopes and 78 emmetropia) aged 6 to 12 years, with spherical equivalent refractive errors between + 0.50 and − 5.50 diopters(D). Peripapillary choroidal imaging was performed using circular scans of a diameter of 3.4 mm around the optic disc. PPCT and the corresponding peripapillary retinal thickness (PPRT) were measured by EDI-OCT at nine positions: I, inferior; IN, inferonasal; IT, inferotemporal; N, nasal; T, temporal; S, superior; SN, superonasal; ST, superotemporal, and the Fovea Centralis.

Results

The mean global PPCT was 165.80 ± 39.86 μm.The mean global PPRT was 101.47 ± 10.74 μm. The Inferior had the thinnest PPCT but the thickest PPRT (p < 0.001), while the Nasal had thickest PPCT but the thinnest PPRT (p < 0.001). Significant differences in RT between the myopic group and the emmetropic group were found at all positions except T, TS, S and the fovea. Myopic group had thinner choroidal thickness (CT) than that of emmetropic group at all measured positions. Choroidal thickness had negative relation with the corresponding retinal thickness, age and axial length.

Conclusion

The peripapillary choroid was thicker nasally and thinner inferiorly, while the peripapillary retina was thickest inferiorly and thinnest nasally. Myopic group had thinner PPCT. The axial length was found to be negatively correlated to PPCT.
Literature
1.
go back to reference Bar Dayan Y, Levin A, Morad Y, et al. The changing prevalence of myopia in young adults: a 13-year series of population-based prevalence surveys. Invest Ophthalmol Vis Sci. 2005;46:2760–5.CrossRefPubMed Bar Dayan Y, Levin A, Morad Y, et al. The changing prevalence of myopia in young adults: a 13-year series of population-based prevalence surveys. Invest Ophthalmol Vis Sci. 2005;46:2760–5.CrossRefPubMed
2.
go back to reference Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93.CrossRefPubMed Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93.CrossRefPubMed
3.
go back to reference Linsenmeier RA, Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci. 2000;41(10):3117–23.PubMed Linsenmeier RA, Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci. 2000;41(10):3117–23.PubMed
4.
go back to reference Spraul CW, Lang GE, Lang GK, Grossniklaus HE. Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vis Res. 2002;42(7):923–32.CrossRefPubMed Spraul CW, Lang GE, Lang GK, Grossniklaus HE. Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vis Res. 2002;42(7):923–32.CrossRefPubMed
5.
go back to reference McCourt EA, Cadena BC, Barnett CJ, Ciardella AP, Mandava N, Kahook MY. Measurement of subfoveal choroidal thickness using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2010;41(suppl):S28–33.CrossRefPubMed McCourt EA, Cadena BC, Barnett CJ, Ciardella AP, Mandava N, Kahook MY. Measurement of subfoveal choroidal thickness using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2010;41(suppl):S28–33.CrossRefPubMed
6.
go back to reference Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci. 2000;41:1249–58.PubMed Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci. 2000;41:1249–58.PubMed
7.
go back to reference Zhu X, Wallman J. Temporal properties of compensation for positive and negative spectacle lenses in chicks. Invest Ophthalmol Vis Sci. 2009;50:37–46.CrossRefPubMed Zhu X, Wallman J. Temporal properties of compensation for positive and negative spectacle lenses in chicks. Invest Ophthalmol Vis Sci. 2009;50:37–46.CrossRefPubMed
8.
go back to reference Wallman J, Wildsoet C, Xu A. Moving the retina: choroidal modulation of refractive state. Vis Res. 2006;46:267–83.CrossRef Wallman J, Wildsoet C, Xu A. Moving the retina: choroidal modulation of refractive state. Vis Res. 2006;46:267–83.CrossRef
9.
go back to reference Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29:144e168.CrossRef Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29:144e168.CrossRef
10.
go back to reference Summers JA. The choroid as a scleral growth regulator. Exp Eye Res. 2013;114:120e127.CrossRef Summers JA. The choroid as a scleral growth regulator. Exp Eye Res. 2013;114:120e127.CrossRef
11.
go back to reference Chen FK, Yeoh J, Rahman W, et al. Topographic variation and interocular symmetry of macular choroidal thickness using enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(2):975–85.CrossRefPubMed Chen FK, Yeoh J, Rahman W, et al. Topographic variation and interocular symmetry of macular choroidal thickness using enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(2):975–85.CrossRefPubMed
12.
go back to reference Hirata M, Tsujikawa A, Matsumoto A, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):4971–8.CrossRefPubMed Hirata M, Tsujikawa A, Matsumoto A, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):4971–8.CrossRefPubMed
13.
go back to reference Park HY, Lee NY, Shin HY, et al. Analysis of macular and peripapillary choroidal thickness in glaucoma patients by enhanced depth imaging opitical coherence tomography. J Glaucoma. 2014;23(4):225.PubMed Park HY, Lee NY, Shin HY, et al. Analysis of macular and peripapillary choroidal thickness in glaucoma patients by enhanced depth imaging opitical coherence tomography. J Glaucoma. 2014;23(4):225.PubMed
14.
go back to reference Gupta P, Cheung CY, Saw SM, et al. Peripapillary choroidal thickness in young Asians with high myopia. Invest Ophthalmol Vis Sci. 2015;56(3):1475–81.CrossRefPubMed Gupta P, Cheung CY, Saw SM, et al. Peripapillary choroidal thickness in young Asians with high myopia. Invest Ophthalmol Vis Sci. 2015;56(3):1475–81.CrossRefPubMed
15.
go back to reference Verkicharla PK, Ohno-Matsui K, Saw SM. Current and predicted demographics of high myopia and an update of its associated pathological changes. Ophthalmic Physiol Opt. 2015;35(5):465–75.CrossRefPubMed Verkicharla PK, Ohno-Matsui K, Saw SM. Current and predicted demographics of high myopia and an update of its associated pathological changes. Ophthalmic Physiol Opt. 2015;35(5):465–75.CrossRefPubMed
17.
go back to reference Wu XS, Shen LJ, Chen RR, Lyu Z. Peripapillary choroidal thickness in Chinese children using enhanced depth imaging optical coherence tomography. Int J Ophthalmol. 2016;9(10):1451–6.PubMedPubMedCentral Wu XS, Shen LJ, Chen RR, Lyu Z. Peripapillary choroidal thickness in Chinese children using enhanced depth imaging optical coherence tomography. Int J Ophthalmol. 2016;9(10):1451–6.PubMedPubMedCentral
18.
go back to reference Read SA, Alonso-Caneiro D, Vincent SJ, et al. Peripapillary choroidal thickness in childhood. Exp Eye Res. 2015;135:164–73.CrossRefPubMed Read SA, Alonso-Caneiro D, Vincent SJ, et al. Peripapillary choroidal thickness in childhood. Exp Eye Res. 2015;135:164–73.CrossRefPubMed
20.
go back to reference Jiang R, Wang YX, Wei WB, Xu L, Jonas JB. Peripapillary choroidal thickness in adult Chinese: the Beijing eye study. Invest Ophthalmol Vis Sci. 2015;56(6):4045–52.CrossRefPubMed Jiang R, Wang YX, Wei WB, Xu L, Jonas JB. Peripapillary choroidal thickness in adult Chinese: the Beijing eye study. Invest Ophthalmol Vis Sci. 2015;56(6):4045–52.CrossRefPubMed
21.
go back to reference Schoenwolf G, Bleyl S, Brauer P, et al. Larsen’s human embryology. Philadelphia: Elsevier; 2009. p. 602–16. Schoenwolf G, Bleyl S, Brauer P, et al. Larsen’s human embryology. Philadelphia: Elsevier; 2009. p. 602–16.
22.
go back to reference Tanabe H, Ito Y, Terasaki H. Choroidal is thinner in the inferior region of optic disks of normal eyes. Retina. 2012;32(1):134–9.CrossRefPubMed Tanabe H, Ito Y, Terasaki H. Choroidal is thinner in the inferior region of optic disks of normal eyes. Retina. 2012;32(1):134–9.CrossRefPubMed
23.
go back to reference Hirooka K, Tenkumo K, Fujiwara A, Baba T, Sato S, Shiraga F. Evaluation of peripapillary choroidal thickness in patients with normal tension glaucoma. BMC Ophthalmol. 2012;12:29.CrossRefPubMedPubMedCentral Hirooka K, Tenkumo K, Fujiwara A, Baba T, Sato S, Shiraga F. Evaluation of peripapillary choroidal thickness in patients with normal tension glaucoma. BMC Ophthalmol. 2012;12:29.CrossRefPubMedPubMedCentral
24.
go back to reference Harb E, Hyman L, Gwiazda J, et al. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort. Am J Ophthalmol. 2015;160(1):62–71.CrossRefPubMedPubMedCentral Harb E, Hyman L, Gwiazda J, et al. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort. Am J Ophthalmol. 2015;160(1):62–71.CrossRefPubMedPubMedCentral
26.
go back to reference Lee K, Lee J, Lee CS, et al. Topographical variation of macular choroidal thickness with myopia. Acta Ophthalmol. 2015;93(6):e469–74.CrossRefPubMed Lee K, Lee J, Lee CS, et al. Topographical variation of macular choroidal thickness with myopia. Acta Ophthalmol. 2015;93(6):e469–74.CrossRefPubMed
27.
go back to reference Goh JP, Koh V, Chan YH, et al. Macular ganglion cell and retinal nerve fiber layer thickness in children with refractive errors-an optical coherence tomography study. J Glaucoma. 2017. [Epub ahead of print]. Goh JP, Koh V, Chan YH, et al. Macular ganglion cell and retinal nerve fiber layer thickness in children with refractive errors-an optical coherence tomography study. J Glaucoma. 2017. [Epub ahead of print].
28.
go back to reference Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM. Optic disc change with incipient myopia of childhood. Ophthalmology. 2012;31(1):21–6.CrossRef Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM. Optic disc change with incipient myopia of childhood. Ophthalmology. 2012;31(1):21–6.CrossRef
29.
go back to reference Hung LF, Wallman J, Smith ELIII. Vision-dependent changes in the choroidal thickness of macaque monkeys. Invest Ophthalmol Vis Sci. 2000;41:1259–69.PubMed Hung LF, Wallman J, Smith ELIII. Vision-dependent changes in the choroidal thickness of macaque monkeys. Invest Ophthalmol Vis Sci. 2000;41:1259–69.PubMed
Metadata
Title
Evaluation of peripapillary choroidal distribution in children by enhanced depth imaging optical coherence tomography
Authors
Yi Zha
Jinfei Zhuang
Yixia Du
Jianqiu Cai
Haihua Zheng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0839-6

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue