Skip to main content
Top
Published in: BMC Ophthalmology 1/2017

Open Access 01-12-2017 | Research article

Next-generation sequencing for D47N mutation in Cx50 analysis associated with autosomal dominant congenital cataract in a six-generation Chinese family

Authors: Chao Shen, Jingbing Wang, Xiaotang Wu, Fuchao Wang, Yang Liu, Xiaoying Guo, Lina Zhang, Yanfei Cao, Xiuhua Cao, Hongxing Ma

Published in: BMC Ophthalmology | Issue 1/2017

Login to get access

Abstract

Background

Congenital cataract is the most frequent cause of blindness during infancy or early childhood. To date, more than 40 loci associated with congenital cataract have been identified, including at least 26 genes on different chromosomes associated with inherited cataract. This present study aimed to identify the genetic mutation in a six-generation Chinese family affected with congenital cataract.

Methods

A detailed six-generation Chinese cataract family history and clinical data of the family members were recorded. A total of 27 family members, including 14 affected and 13 unaffected individuals were recruited. Whole exome sequencing was performed to determine the disease-causing mutation. Sanger sequencing was used to confirm the results.

Results

A known missense mutation, c. 139G > A (p. D47N), in Cx50 was identified. This mutation co-segregated with all affected individuals and was not observed in the unaffected family members or in 100 unrelated controls. The homology modeling showed that the structure of the mutant protein was different with that wild-type Cx50.

Conclusions

The missense mutation c.139G > A in GJA8 gene is associated with autosomal dominant congenital cataract in a six-generation Chinese family. The result of this present study provides further evidence that the p. D47N mutation in CX50 is a hot-spot mutation.
Literature
1.
go back to reference Apple DJ, Ram J, Foster A, Peng Q. Elimination of cataract blindness: a global perspective entering the new millenium. Surv Ophthalmol. 2000;45(Suppl 1):S1–196.PubMed Apple DJ, Ram J, Foster A, Peng Q. Elimination of cataract blindness: a global perspective entering the new millenium. Surv Ophthalmol. 2000;45(Suppl 1):S1–196.PubMed
2.
go back to reference Holmes JM, Leske DA, Burke JP, Hodge DO. Birth prevalence of visually significant infantile cataract in a defined U.S. population. Ophthalmic Epidemiol. 2003;10(2):67–74.CrossRefPubMed Holmes JM, Leske DA, Burke JP, Hodge DO. Birth prevalence of visually significant infantile cataract in a defined U.S. population. Ophthalmic Epidemiol. 2003;10(2):67–74.CrossRefPubMed
4.
go back to reference Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol. 2004;49(3):300–15.CrossRefPubMed Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol. 2004;49(3):300–15.CrossRefPubMed
5.
go back to reference Hejtmancik JF. Congenital cataracts and their molecular genetics. Semin Cell Dev Biol. 2008;19(2):134–49.CrossRefPubMed Hejtmancik JF. Congenital cataracts and their molecular genetics. Semin Cell Dev Biol. 2008;19(2):134–49.CrossRefPubMed
6.
go back to reference Mackay DS, Bennett TM, Culican SM, Shiels A. Exome sequencing identifies novel and recurrent mutations in GJA8 and CRYGD associated with inherited cataract. Hum Genomics. 2014;8:19.CrossRefPubMedPubMedCentral Mackay DS, Bennett TM, Culican SM, Shiels A. Exome sequencing identifies novel and recurrent mutations in GJA8 and CRYGD associated with inherited cataract. Hum Genomics. 2014;8:19.CrossRefPubMedPubMedCentral
7.
go back to reference Santana A, Waiswo M. The genetic and molecular basis of congenital cataract. Arq Bras Oftalmol. 2011;74(2):136–42.CrossRefPubMed Santana A, Waiswo M. The genetic and molecular basis of congenital cataract. Arq Bras Oftalmol. 2011;74(2):136–42.CrossRefPubMed
8.
go back to reference Arora A, Minogue PJ, Liu X, Reddy MA, Ainsworth JR, Bhattacharya SS, Webster AR, Hunt DM, Ebihara L, Moore AT, Beyer EC, Berthoud VM. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract. J Med Genet. 2006;43(1):e2.CrossRefPubMedPubMedCentral Arora A, Minogue PJ, Liu X, Reddy MA, Ainsworth JR, Bhattacharya SS, Webster AR, Hunt DM, Ebihara L, Moore AT, Beyer EC, Berthoud VM. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract. J Med Genet. 2006;43(1):e2.CrossRefPubMedPubMedCentral
9.
go back to reference Ge XL, Zhang Y, Wu Y, Lv J, Zhang W, Jin ZB, Qu J, Gu F. Identification of a novel GJA8 (Cx50) point mutation causes human dominant congenital cataracts. Sci Rep. 2014;4:4121.CrossRefPubMedPubMedCentral Ge XL, Zhang Y, Wu Y, Lv J, Zhang W, Jin ZB, Qu J, Gu F. Identification of a novel GJA8 (Cx50) point mutation causes human dominant congenital cataracts. Sci Rep. 2014;4:4121.CrossRefPubMedPubMedCentral
10.
go back to reference Kaul H, Riazuddin SA, Shahid M, Kousar S, Butt NH, Zafar AU, Khan SN, Husnain T, Akram J, Hejtmancik JF, Riazuddin S. Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol Vis. 2010;16:511–7.PubMedPubMedCentral Kaul H, Riazuddin SA, Shahid M, Kousar S, Butt NH, Zafar AU, Khan SN, Husnain T, Akram J, Hejtmancik JF, Riazuddin S. Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol Vis. 2010;16:511–7.PubMedPubMedCentral
11.
go back to reference Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, Jiao X, Hejtmancik JF. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis. 2008;14:2042–55.PubMedPubMedCentral Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, Jiao X, Hejtmancik JF. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis. 2008;14:2042–55.PubMedPubMedCentral
12.
go back to reference Shiels A, Bennett TM, Knopf HL, Yamada K, Yoshiura K, Niikawa N, Shim S, Hanson PI. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am J Hum Genet. 2007;81(3):596–606.CrossRefPubMedPubMedCentral Shiels A, Bennett TM, Knopf HL, Yamada K, Yoshiura K, Niikawa N, Shim S, Hanson PI. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am J Hum Genet. 2007;81(3):596–606.CrossRefPubMedPubMedCentral
13.
go back to reference Su D, Yang Z, Li Q, Guan L, Zhang H, Dandan E, Zhang L, Zhu S, Ma X. Identification and functional analysis of GJA8 mutation in a Chinese family with autosomal dominant perinuclear cataracts. PLoS One. 2013;8(3):e59926.CrossRefPubMedPubMedCentral Su D, Yang Z, Li Q, Guan L, Zhang H, Dandan E, Zhang L, Zhu S, Ma X. Identification and functional analysis of GJA8 mutation in a Chinese family with autosomal dominant perinuclear cataracts. PLoS One. 2013;8(3):e59926.CrossRefPubMedPubMedCentral
14.
go back to reference Wang K, Wang B, Wang J, Zhou S, Yun B, Suo P, Cheng J, Ma X, Zhu S. A novel GJA8 mutation (p.I31T) causing autosomal dominant congenital cataract in a Chinese family. Mol Vis. 2009;15:2813–20.PubMedPubMedCentral Wang K, Wang B, Wang J, Zhou S, Yun B, Suo P, Cheng J, Ma X, Zhu S. A novel GJA8 mutation (p.I31T) causing autosomal dominant congenital cataract in a Chinese family. Mol Vis. 2009;15:2813–20.PubMedPubMedCentral
16.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRefPubMedPubMedCentral McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRefPubMedPubMedCentral
17.
go back to reference Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201.CrossRefPubMed Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201.CrossRefPubMed
18.
go back to reference Churchill A, Graw J. Clinical and experimental advances in congenital and paediatric cataracts. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1568):1234–49.CrossRef Churchill A, Graw J. Clinical and experimental advances in congenital and paediatric cataracts. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1568):1234–49.CrossRef
19.
go back to reference Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet. 2010;53(6):347–57.CrossRefPubMed Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet. 2010;53(6):347–57.CrossRefPubMed
20.
go back to reference Yi J, Yun J, Li ZK, Xu CT, Pan BR. Epidemiology and molecular genetics of congenital cataracts. Int J Ophthalmol. 2014;4(4):422–32. Yi J, Yun J, Li ZK, Xu CT, Pan BR. Epidemiology and molecular genetics of congenital cataracts. Int J Ophthalmol. 2014;4(4):422–32.
24.
25.
go back to reference Sellitto C, Li L, White TW. Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci. 2004;45(9):3196–202.CrossRefPubMed Sellitto C, Li L, White TW. Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci. 2004;45(9):3196–202.CrossRefPubMed
26.
go back to reference Li J, Wang Q, Fu Q, Zhu Y, Zhai Y, Yu Y, Zhang K, Yao K. A novel connexin 50 gene (gap junction protein, alpha 8) mutation associated with congenital nuclear and zonular pulverulent cataract. Mol Vis. 2013;19:767–74.PubMedPubMedCentral Li J, Wang Q, Fu Q, Zhu Y, Zhai Y, Yu Y, Zhang K, Yao K. A novel connexin 50 gene (gap junction protein, alpha 8) mutation associated with congenital nuclear and zonular pulverulent cataract. Mol Vis. 2013;19:767–74.PubMedPubMedCentral
27.
go back to reference Lin Y, Liu NN, Lei CT, Fan YC, Liu XQ, Yang Y, Wang JF, Liu B, Yang ZL. A novel GJA8 mutation in a Chinese family with autosomal dominant congenital cataract. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008;25(1):59–62.PubMed Lin Y, Liu NN, Lei CT, Fan YC, Liu XQ, Yang Y, Wang JF, Liu B, Yang ZL. A novel GJA8 mutation in a Chinese family with autosomal dominant congenital cataract. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008;25(1):59–62.PubMed
28.
go back to reference Wang L, Luo Y, Wen W, Zhang S, Lu Y. Another evidence for a D47N mutation in GJA8 associated with autosomal dominant congenital cataract. Mol Vis. 2011;17:2380–5.PubMedPubMedCentral Wang L, Luo Y, Wen W, Zhang S, Lu Y. Another evidence for a D47N mutation in GJA8 associated with autosomal dominant congenital cataract. Mol Vis. 2011;17:2380–5.PubMedPubMedCentral
29.
go back to reference Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, Webster AR, Hunt DM, Ebihara L, Beyer EC, Berthoud VM, Moore AT. A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet. 2008;45(3):155–60.CrossRefPubMed Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, Webster AR, Hunt DM, Ebihara L, Beyer EC, Berthoud VM, Moore AT. A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet. 2008;45(3):155–60.CrossRefPubMed
30.
go back to reference Steele EC Jr, Lyon MF, Favor J, Guillot PV, Boyd Y, Church RL. A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr Eye Res. 1998;17(9):883–9.CrossRefPubMed Steele EC Jr, Lyon MF, Favor J, Guillot PV, Boyd Y, Church RL. A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr Eye Res. 1998;17(9):883–9.CrossRefPubMed
31.
go back to reference Minogue PJ, Tong JJ, Arora A, Russell-Eggitt I, Hunt DM, Moore AT, Ebihara L, Beyer EC, Berthoud VM. A mutant connexin50 with enhanced hemichannel function leads to cell death. Invest Ophthalmol Vis Sci. 2009;50(12):5837–45.CrossRefPubMedPubMedCentral Minogue PJ, Tong JJ, Arora A, Russell-Eggitt I, Hunt DM, Moore AT, Ebihara L, Beyer EC, Berthoud VM. A mutant connexin50 with enhanced hemichannel function leads to cell death. Invest Ophthalmol Vis Sci. 2009;50(12):5837–45.CrossRefPubMedPubMedCentral
32.
go back to reference Wang E, Geng A, Maniar AM, Mui BWH, Gong X. Connexin 50 regulates surface ball-and-socket structures and fiber cell organization. Invest Ophthalmol Vis Sci. 2016;57(7):3039–46.CrossRefPubMedPubMedCentral Wang E, Geng A, Maniar AM, Mui BWH, Gong X. Connexin 50 regulates surface ball-and-socket structures and fiber cell organization. Invest Ophthalmol Vis Sci. 2016;57(7):3039–46.CrossRefPubMedPubMedCentral
Metadata
Title
Next-generation sequencing for D47N mutation in Cx50 analysis associated with autosomal dominant congenital cataract in a six-generation Chinese family
Authors
Chao Shen
Jingbing Wang
Xiaotang Wu
Fuchao Wang
Yang Liu
Xiaoying Guo
Lina Zhang
Yanfei Cao
Xiuhua Cao
Hongxing Ma
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2017
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-017-0476-5

Other articles of this Issue 1/2017

BMC Ophthalmology 1/2017 Go to the issue