Skip to main content
Top
Published in: BMC Ophthalmology 1/2017

Open Access 01-12-2017 | Research article

Reproducibility of macular ganglion cell–inner plexiform layer thickness in normal eyes determined by two different OCT scanning protocols

Authors: Xiaoyu Xu, Xinxing Guo, Hui Xiao, Lan Mi, Xiangxi Chen, Xing Liu

Published in: BMC Ophthalmology | Issue 1/2017

Login to get access

Abstract

Background

To investigate the reproducibility of macular ganglion cell-inner plexiform layer (GCIPL) thickness measurement in normal eyes determined by different operators and two different raster scanning protocols of Cirrus high-definition optical coherence tomography (HD-OCT).

Methods

One hundred and two eyes of 102 normal subjects were scanned three times using Cirrus HD-OCT with Macular Cube 512 × 128 protocol by two operators, respectively. Three extra scans were obtained using Macular Cube 200 × 200 protocol. The average, minimum, superotemporal, superior, superonasal, inferonasal, inferior, and inferotemporal GCIPL thickness was measured. The reproducibility of the measurements was evaluated with intraclass correlation coefficients (ICC) and coefficients of variation (CoV).

Results

The intra-operator ICCs of macular GCIPL thickness were >0.875; and the inter-operator ICCs were 0.882 to 0.991. The intra-protocol ICCs of Macular Cube 512 × 128 and 200 × 200 protocol were 0.953 to 0.987 and 0.953 to 0.991, respectively; and the inter-protocol ICCs were 0.876 to 0.991. All CoVs were <1.5%.

Conclusions

Cirrus HD-OCT can measure macular GCIPL thickness in normal eyes with excellent reproducibility. The measurements determined by Macular Cube 512 × 128 and 200 × 200 protocol were highly consistent and both protocols were eligible for macular GCIPL thickness measurement.
Literature
1.
2.
go back to reference Liu X, Ling Y, Luo R, Ge J, Zheng X. Optical coherence tomography in measuring retinal nerve fiber layer thickness in normal subjects and patients with open-angle glaucoma. Chin Med J. 2001;114(5):524–9.PubMed Liu X, Ling Y, Luo R, Ge J, Zheng X. Optical coherence tomography in measuring retinal nerve fiber layer thickness in normal subjects and patients with open-angle glaucoma. Chin Med J. 2001;114(5):524–9.PubMed
3.
go back to reference Medeiros FA, Lisboa R, Weinreb RN, Liebmann JM, Girkin C, Zangwill LM. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology. 2013;120(4):736–44.CrossRefPubMed Medeiros FA, Lisboa R, Weinreb RN, Liebmann JM, Girkin C, Zangwill LM. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology. 2013;120(4):736–44.CrossRefPubMed
4.
go back to reference Takayama K, Hangai M, Durbin M, et al. A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(11):6904–13.CrossRefPubMed Takayama K, Hangai M, Durbin M, et al. A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(11):6904–13.CrossRefPubMed
5.
go back to reference Choi YJ, Jeoung JW, Park KH, Kim DM. Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia. Invest Ophthalmol Vis Sci. 2013;54(3):2296–304.CrossRefPubMed Choi YJ, Jeoung JW, Park KH, Kim DM. Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia. Invest Ophthalmol Vis Sci. 2013;54(3):2296–304.CrossRefPubMed
6.
go back to reference Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(11):8323–9.CrossRefPubMedPubMedCentral Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(11):8323–9.CrossRefPubMedPubMedCentral
7.
go back to reference Mwanza JC, Durbin MK, Budenz DL, et al. Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(11):7872–9.CrossRefPubMed Mwanza JC, Durbin MK, Budenz DL, et al. Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(11):7872–9.CrossRefPubMed
8.
go back to reference Hagen S, Krebs I, Haas P, et al. Reproducibility and comparison of retinal thickness and volume measurements in normal eyes determined with two different cirrus OCT scanning protocols. Retina. 2011;31(1):41–7.CrossRefPubMed Hagen S, Krebs I, Haas P, et al. Reproducibility and comparison of retinal thickness and volume measurements in normal eyes determined with two different cirrus OCT scanning protocols. Retina. 2011;31(1):41–7.CrossRefPubMed
9.
go back to reference Costello FE. Optical coherence tomography technologies: which machine do you want to own? J Neuroophthalmol. 2014;34(Suppl):S3–9.CrossRefPubMed Costello FE. Optical coherence tomography technologies: which machine do you want to own? J Neuroophthalmol. 2014;34(Suppl):S3–9.CrossRefPubMed
10.
go back to reference Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, et al. Macular ganglion cell/inner Plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156(6):1297–1307.e2.CrossRefPubMed Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, et al. Macular ganglion cell/inner Plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156(6):1297–1307.e2.CrossRefPubMed
11.
go back to reference Koh VT, Tham YC, Cheung CY, et al. Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5853–9.CrossRefPubMed Koh VT, Tham YC, Cheung CY, et al. Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5853–9.CrossRefPubMed
12.
go back to reference Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46(6):2012–7.CrossRefPubMedPubMedCentral Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46(6):2012–7.CrossRefPubMedPubMedCentral
13.
go back to reference Kim M, Lee SJ, Han J, Yu SY, Kwak HW. Segmentation error and macular thickness measurements obtained with spectral-domain optical coherence tomography devices in neovascular age-related macular degeneration. Indian J Ophthalmol. 2013;61(5):213–7.CrossRefPubMedPubMedCentral Kim M, Lee SJ, Han J, Yu SY, Kwak HW. Segmentation error and macular thickness measurements obtained with spectral-domain optical coherence tomography devices in neovascular age-related macular degeneration. Indian J Ophthalmol. 2013;61(5):213–7.CrossRefPubMedPubMedCentral
14.
go back to reference Wu Z, Huang J, Dustin L, Sadda SR. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma. 2009;18(3):213–6.CrossRefPubMedPubMedCentral Wu Z, Huang J, Dustin L, Sadda SR. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma. 2009;18(3):213–6.CrossRefPubMedPubMedCentral
15.
go back to reference Zhang X, Iverson SM, Tan O, Huang D. Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in Fourier-domain optical coherence tomography. Transl Vis Sci Technol. 2015;4(5):7.CrossRefPubMedPubMedCentral Zhang X, Iverson SM, Tan O, Huang D. Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in Fourier-domain optical coherence tomography. Transl Vis Sci Technol. 2015;4(5):7.CrossRefPubMedPubMedCentral
16.
go back to reference Russell DJ, Fallah S, Loer CJ, Riffenburgh RH. A comprehensive model for correcting RNFL readings of varying signal strengths in cirrus optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(11):7297–302.CrossRefPubMed Russell DJ, Fallah S, Loer CJ, Riffenburgh RH. A comprehensive model for correcting RNFL readings of varying signal strengths in cirrus optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(11):7297–302.CrossRefPubMed
17.
go back to reference Huang J, Liu X, Wu Z, Sadda S. Image quality affects macular and retinal nerve fiber layer thickness measurements on fourier-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2011;42(3):216–21.CrossRefPubMed Huang J, Liu X, Wu Z, Sadda S. Image quality affects macular and retinal nerve fiber layer thickness measurements on fourier-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2011;42(3):216–21.CrossRefPubMed
Metadata
Title
Reproducibility of macular ganglion cell–inner plexiform layer thickness in normal eyes determined by two different OCT scanning protocols
Authors
Xiaoyu Xu
Xinxing Guo
Hui Xiao
Lan Mi
Xiangxi Chen
Xing Liu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2017
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-017-0434-2

Other articles of this Issue 1/2017

BMC Ophthalmology 1/2017 Go to the issue