Skip to main content
Top
Published in: BMC Ophthalmology 1/2016

Open Access 01-12-2016 | Research article

Effects of orthokeratology on the progression of low to moderate myopia in Chinese children

Authors: Mengmei He, Yaru Du, Qingyu Liu, Chengda Ren, Junling Liu, Qianyi Wang, Li Li, Jing Yu

Published in: BMC Ophthalmology | Issue 1/2016

Login to get access

Abstract

Background

To investigate the effectiveness of orthokeratology (ortho-k) in reducing the development of myopia in Chinese children with low to moderate myopia.

Methods

This was a retrospective study. In the ortho-k group, there were141 subjects, and the average age was (9.43 ± 1.10) years. The average spherical equivalent refractive error (SER) was (−2.74 ± 1.15)D, with examinations performed 1, 7, 30, and 90 days and 12 months after the patients started wearing ortho-k lenses. In the control group, there were 130 subjects, and the average age was (9.37 ± 1.00) years. The average SER was (−2.88 ± 1.39)D, with examinations performed every 6 months. Axial elongation, which is an important parameter reflecting the progression of myopia, was measured at baseline from the same IOLMaster each time by the same masked examiner and was compared between the groups after 1 year. The subjects were divided into two sub-groups according to age to further study the development of myopia at different ages. An unpaired t-test, paired t-test, Chi-square test and Spearman test were performed to analyze the data.

Results

After 1 year, the average axial elongation was (0.27 ± 0.17) mm in the ortho-k lens group and (0.38 ± 0.13) mm in the control group, with a significant difference between the groups (P < 0.001). Axial elongation was not correlated with SER but had a negative correlation with initial age (ortho-k group: r s = −0.309, p < 0.01; control group: r s = −0.472, p < 0.01). The percentages of individuals with fast myopic progression (axial elongation > 0.36 mm per year) were 38.0 % among younger children (7.00 to 9.40 years) and 24.3 % among older children (9.40 to 12.00 years), whereas the respective percentages were 76.5 and 12.9 % in the control group. When SER ranged from -5.0D to −6.0D, the axial elongation in the ortho-k group was 57.1 % slower than that in the control group.

Conclusions

Ortho-k lenses are effective in controlling myopic progression in Chinese children, particularly in younger children and in children with higher myopia.
Literature
1.
go back to reference Wu LJ, You QS, Duan JL, Luo YX, Liu LJ, Li X, et al. Prevalence and associated factors of myopia in high-school students in Beijing. PLoS One. 2015;10:e120764. Wu LJ, You QS, Duan JL, Luo YX, Liu LJ, Li X, et al. Prevalence and associated factors of myopia in high-school students in Beijing. PLoS One. 2015;10:e120764.
2.
go back to reference Saxena R, Vashist P, Tandon R, Pandey RM, Bhardawaj A, Menon V, et al. Prevalence of myopia and its risk factors in urban school children in Delhi: the North India myopia study (nim study). PLoS One. 2015;10:e117349. Saxena R, Vashist P, Tandon R, Pandey RM, Bhardawaj A, Menon V, et al. Prevalence of myopia and its risk factors in urban school children in Delhi: the North India myopia study (nim study). PLoS One. 2015;10:e117349.
3.
go back to reference Cho P, Cheung SW, Edwards MH. Practice of orthokeratology by a group of contact lens practitioners in Hong Kong--part 1. general overview. Clin Exp Optom. 2002;85:365–71.CrossRefPubMed Cho P, Cheung SW, Edwards MH. Practice of orthokeratology by a group of contact lens practitioners in Hong Kong--part 1. general overview. Clin Exp Optom. 2002;85:365–71.CrossRefPubMed
4.
go back to reference Williams KM, Verhoeven VJ, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GH, et al. Prevalence of refractive error in Europe: the european eye epidemiology (e(3)) consortium. Eur J Epidemiol. 2015;30:305–15.CrossRefPubMedPubMedCentral Williams KM, Verhoeven VJ, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GH, et al. Prevalence of refractive error in Europe: the european eye epidemiology (e(3)) consortium. Eur J Epidemiol. 2015;30:305–15.CrossRefPubMedPubMedCentral
5.
go back to reference Zhao J, Mao J, Luo R, Li F, Munoz SR, Ellwein LB. The progression of refractive error in school-age children: Shunyi district, china. Am J Ophthalmol. 2002;134:735–43.CrossRefPubMed Zhao J, Mao J, Luo R, Li F, Munoz SR, Ellwein LB. The progression of refractive error in school-age children: Shunyi district, china. Am J Ophthalmol. 2002;134:735–43.CrossRefPubMed
6.
go back to reference Lee JY, Sung KR, Han S, Na JH. Effect of myopia on the progression of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2015;56:1775–81.CrossRefPubMed Lee JY, Sung KR, Han S, Na JH. Effect of myopia on the progression of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2015;56:1775–81.CrossRefPubMed
7.
go back to reference Kamal SR, Morillo-Sanchez MJ, Garcia-Ben A, Rius-Diaz F, Cilveti-Puche A, Figueroa-Ortiz L, et al. The effect of peripapillary detachment on retinal nerve fiber layer measurement by spectral domain optical coherence tomography in high myopia. Ophthalmologica. 2015;233(3-4):209–15.CrossRef Kamal SR, Morillo-Sanchez MJ, Garcia-Ben A, Rius-Diaz F, Cilveti-Puche A, Figueroa-Ortiz L, et al. The effect of peripapillary detachment on retinal nerve fiber layer measurement by spectral domain optical coherence tomography in high myopia. Ophthalmologica. 2015;233(3-4):209–15.CrossRef
8.
go back to reference Coppe AM, Ripandelli G, Parisi V, Varano M, Stirpe M. Prevalence of asymptomatic macular holes in highly myopic eyes. Ophthalmology. 2005;112:2103–9.CrossRefPubMed Coppe AM, Ripandelli G, Parisi V, Varano M, Stirpe M. Prevalence of asymptomatic macular holes in highly myopic eyes. Ophthalmology. 2005;112:2103–9.CrossRefPubMed
9.
go back to reference Zhu MJ, Feng HY, He XG, Zou HD, Zhu JF. The control effect of orthokeratology on axial length elongation in Chinese children with myopia. BMC Ophthalmol. 2014;14:141.CrossRefPubMedPubMedCentral Zhu MJ, Feng HY, He XG, Zou HD, Zhu JF. The control effect of orthokeratology on axial length elongation in Chinese children with myopia. BMC Ophthalmol. 2014;14:141.CrossRefPubMedPubMedCentral
10.
go back to reference Lum E, Swarbrick HA. Lens dk/t influences the clinical response in overnight orthokeratology. Optom Vis Sci. 2011;88:469–75.CrossRefPubMed Lum E, Swarbrick HA. Lens dk/t influences the clinical response in overnight orthokeratology. Optom Vis Sci. 2011;88:469–75.CrossRefPubMed
11.
go back to reference Si JK, Tang K, Bi HS, Guo DD, Guo JG, Wang XR. Orthokeratology for myopia control: a meta-analysis. Optom Vis Sci. 2015;92(3):252–7.CrossRefPubMed Si JK, Tang K, Bi HS, Guo DD, Guo JG, Wang XR. Orthokeratology for myopia control: a meta-analysis. Optom Vis Sci. 2015;92(3):252–7.CrossRefPubMed
12.
go back to reference Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011;52:2170–4.CrossRefPubMed Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011;52:2170–4.CrossRefPubMed
13.
go back to reference Sun Y, Xu F, Zhang T, Liu M, Wang D, Chen Y, et al. Orthokeratology to control myopia progression: a meta-analysis. PLoS One. 2015;10(4):e0 124535.CrossRef Sun Y, Xu F, Zhang T, Liu M, Wang D, Chen Y, et al. Orthokeratology to control myopia progression: a meta-analysis. PLoS One. 2015;10(4):e0 124535.CrossRef
14.
go back to reference Rabbetts RB, Mallen EAH. Distribution and ocular dioptrics ofametropia. In: Bennett and Rabbetts’ clinical visual optics. 4th ed. Edinburg: Elsevier/Butterworth–Heinemann; 2007. p. 425. Rabbetts RB, Mallen EAH. Distribution and ocular dioptrics ofametropia. In: Bennett and Rabbetts’ clinical visual optics. 4th ed. Edinburg: Elsevier/Butterworth–Heinemann; 2007. p. 425.
15.
go back to reference Reinstein DZ, Gobbe M, Archer TJ, Couch D, Bloom B, et al. Epithelial, stromal, and corneal pachymetry changes during orthokeratology. Optom Vis Sci. 2009;86:e1006–14.CrossRefPubMed Reinstein DZ, Gobbe M, Archer TJ, Couch D, Bloom B, et al. Epithelial, stromal, and corneal pachymetry changes during orthokeratology. Optom Vis Sci. 2009;86:e1006–14.CrossRefPubMed
16.
go back to reference Zhong X, Chen X, Xie RZ, Yang J, Li S, Yang X, et al. Differences between overnight and long-term wear of orthokeratology contact lenses in corneal contour, thickness, and cell density. Cornea. 2009;28:271–9.CrossRefPubMed Zhong X, Chen X, Xie RZ, Yang J, Li S, Yang X, et al. Differences between overnight and long-term wear of orthokeratology contact lenses in corneal contour, thickness, and cell density. Cornea. 2009;28:271–9.CrossRefPubMed
17.
go back to reference Kang P, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011;88:476–82.CrossRefPubMed Kang P, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011;88:476–82.CrossRefPubMed
18.
go back to reference Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (to-see study). Invest Ophthalmol Vis Sci. 2013;54:6510–7.CrossRefPubMed Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (to-see study). Invest Ophthalmol Vis Sci. 2013;54:6510–7.CrossRefPubMed
19.
go back to reference Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015;122:620–30.CrossRefPubMed Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015;122:620–30.CrossRefPubMed
20.
go back to reference Pauné J, Morales H, Armengol J, Quevedo L, Faria-Ribeiro M, González-Méijome JM. Myopia control with a novel peripheral gradient soft lens and orthokeratology: a 2-year clinical trial. Biomed Res Int. 2015;2015:507572.CrossRefPubMedPubMedCentral Pauné J, Morales H, Armengol J, Quevedo L, Faria-Ribeiro M, González-Méijome JM. Myopia control with a novel peripheral gradient soft lens and orthokeratology: a 2-year clinical trial. Biomed Res Int. 2015;2015:507572.CrossRefPubMedPubMedCentral
21.
go back to reference Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53:3913–9.CrossRefPubMed Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53:3913–9.CrossRefPubMed
22.
go back to reference Lin HJ, Wan L, Tsai FJ, Tsai YY, Chen LA, Tsai AL, et al. Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol. 2014;14:40.CrossRefPubMedPubMedCentral Lin HJ, Wan L, Tsai FJ, Tsai YY, Chen LA, Tsai AL, et al. Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol. 2014;14:40.CrossRefPubMedPubMedCentral
23.
go back to reference Smith ER, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49:2386–92.CrossRefPubMedPubMedCentral Smith ER, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49:2386–92.CrossRefPubMedPubMedCentral
24.
go back to reference Mutti DO, Sholtz RI, Friedman NE, Zadnik K. Peripheral refraction and ocular shape in children. Invest Ophthalmol Vis Sci. 2000;41:1022–30.PubMed Mutti DO, Sholtz RI, Friedman NE, Zadnik K. Peripheral refraction and ocular shape in children. Invest Ophthalmol Vis Sci. 2000;41:1022–30.PubMed
25.
go back to reference Norton TT, Jr Siegwart JT. Animal models of emmetropization: matching axial length to the focal plane. J Am Optom Assoc. 1995;66:405–14.PubMed Norton TT, Jr Siegwart JT. Animal models of emmetropization: matching axial length to the focal plane. J Am Optom Assoc. 1995;66:405–14.PubMed
26.
go back to reference Fan DS, Lam DS, Lam RF, Lau JT, Chong KS, Cheung EY, et al. Prevalence, incidence, and progression of myopia of school children in hong kong. Invest Ophthalmol Vis Sci. 2004;45:1071–5.CrossRefPubMed Fan DS, Lam DS, Lam RF, Lau JT, Chong KS, Cheung EY, et al. Prevalence, incidence, and progression of myopia of school children in hong kong. Invest Ophthalmol Vis Sci. 2004;45:1071–5.CrossRefPubMed
27.
go back to reference Edwards MH. The development of myopia in Hong Kong children between the ages of 7 and 12 years: a five-year longitudinal study. Ophthalmic Physiol Opt. 1999;19:286–94.CrossRefPubMed Edwards MH. The development of myopia in Hong Kong children between the ages of 7 and 12 years: a five-year longitudinal study. Ophthalmic Physiol Opt. 1999;19:286–94.CrossRefPubMed
28.
go back to reference Donovan L, Sankaridurg P, Ho A, Naduvilath T, Smith ER, Holden BA. Myopia progression rates in urban children wearing single-vision spectacles. Optom Vis Sci. 2012;89:27–32.CrossRefPubMedPubMedCentral Donovan L, Sankaridurg P, Ho A, Naduvilath T, Smith ER, Holden BA. Myopia progression rates in urban children wearing single-vision spectacles. Optom Vis Sci. 2012;89:27–32.CrossRefPubMedPubMedCentral
29.
go back to reference Walline JJ, Rah MJ, Jones LA. The children’s overnight orthokeratology investigation (cooki) pilot study. Optom Vis Sci. 2004;81:407–13.CrossRefPubMed Walline JJ, Rah MJ, Jones LA. The children’s overnight orthokeratology investigation (cooki) pilot study. Optom Vis Sci. 2004;81:407–13.CrossRefPubMed
30.
go back to reference Chan TC, Li EY, Wong VW, Jhanji V. Orthokeratology-associated infectious keratitis in a tertiary care eye hospital in Hong Kong. Am J Ophthalmol. 2014;158(6):1130–5.CrossRefPubMed Chan TC, Li EY, Wong VW, Jhanji V. Orthokeratology-associated infectious keratitis in a tertiary care eye hospital in Hong Kong. Am J Ophthalmol. 2014;158(6):1130–5.CrossRefPubMed
31.
go back to reference Lo J, Kuo MT, Chien CC, Tseng SL, Lai YH, Fang PC. Microbial bioburden of orthokeratology contact lens care system. Eye Contact Lens. 2016;42:61–7. Lo J, Kuo MT, Chien CC, Tseng SL, Lai YH, Fang PC. Microbial bioburden of orthokeratology contact lens care system. Eye Contact Lens. 2016;42:61–7.
32.
go back to reference Watt KG, Swarbrick HA. Trends in microbial keratitis associated with orthokeratology. Eye Contact Lens. 2007;33:373–7. 382.CrossRefPubMed Watt KG, Swarbrick HA. Trends in microbial keratitis associated with orthokeratology. Eye Contact Lens. 2007;33:373–7. 382.CrossRefPubMed
Metadata
Title
Effects of orthokeratology on the progression of low to moderate myopia in Chinese children
Authors
Mengmei He
Yaru Du
Qingyu Liu
Chengda Ren
Junling Liu
Qianyi Wang
Li Li
Jing Yu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2016
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-016-0302-5

Other articles of this Issue 1/2016

BMC Ophthalmology 1/2016 Go to the issue