Skip to main content
Top
Published in: BMC Cancer 1/2022

Open Access 01-12-2022 | Pancreatic Cancer | Research

Comprehensive analysis of the prognosis and immune infiltration landscape of RNA methylation-related subtypes in pancreatic cancer

Authors: Siyuan Lu, Jie Hua, Jiang Liu, Miaoyan Wei, Chen Liang, Qingcai Meng, Bo Zhang, Xianjun Yu, Wei Wang, Jin Xu

Published in: BMC Cancer | Issue 1/2022

Login to get access

Abstract

Background

RNA methylation refers to a form of methyl modification in RNA that modulates various epigenetic alterations. Mounting studies have focused on its potential mechanisms in cancer initiation and progression. However, the prognostic value and potential role of RNA methylation in the immune microenvironment of pancreatic cancer remain unclear.

Methods

Comprehensive bioinformatics analysis was performed to illuminate the expression profiles of RNA methylation modulators. In addition, the ConsensusClusterPlus algorithm was utilized to identify two remarkably different subtypes, and a feasible risk stratification method was established to accurately estimate prognosis. In addition, we validated our signature at the cytology and histology levels and conducted functional experiments to explore the biological functions of our key genes.

Results

Two subtypes with remarkable survival differences were identified by the consensus clustering algorithm. Cluster 2 tended to have higher expression levels of RNA methylation regulators and to be the high RNA methylation group. In addition, cluster 1 exhibited a significantly higher abundance of almost all immune cells and increased immune checkpoint expression compared to cluster 2. Chemotherapeutic sensitivity analysis indicated that there were significant differences in the sensitivity of four of the six drugs between different subgroups. Mutation investigation revealed a higher mutation burden and a higher number of mutations in cluster 2. An accurate and feasible risk stratification method was established based on the expression of key genes of each subtype. Patients with low risk scores exhibited longer survival times in one training (TCGA) and two validation cohorts (ICGC, GSE57495), with p values of 0.001, 0.0081, and 0.0042, respectively. In addition, our signature was further validated in a cohort from Fudan University Shanghai Cancer Center. The low-risk group exhibited higher immune cell abundance and immune checkpoint levels than the high-risk group. The characteristics of the low-risk group were consistent with those of cluster 1: higher stromal score, estimate score, and immune score and lower tumor purity. Additionally, cell function investigations suggested that knockdown of CDKN3 remarkably inhibited the proliferation and migration of pancreatic cancer cells.

Conclusions

RNA methylation has a close correlation with prognosis, immune infiltration and therapy in pancreatic cancer. Our subtypes and risk stratification method can accurately predict prognosis and the efficacy of immune therapy and chemotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Strobel O, Neoptolemos J, Jäger D, Büchler MW. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol. 2019;16(1):11–26.PubMedCrossRef Strobel O, Neoptolemos J, Jäger D, Büchler MW. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol. 2019;16(1):11–26.PubMedCrossRef
2.
3.
go back to reference Hoos WA, James PM, Rahib L, Talley AW, Fleshman JM, Matrisian LM. Pancreatic cancer clinical trials and accrual in the United States. J Clin Oncol. 2013;31(27):3432–8.PubMedCrossRef Hoos WA, James PM, Rahib L, Talley AW, Fleshman JM, Matrisian LM. Pancreatic cancer clinical trials and accrual in the United States. J Clin Oncol. 2013;31(27):3432–8.PubMedCrossRef
4.
go back to reference Dolladille C, Ederhy S, Sassier M, Cautela J, Thuny F, Cohen AA, et al. Immune checkpoint inhibitor Rechallenge after immune-related adverse events in patients with Cancer. JAMA Oncol. 2020;6(6):865–71.PubMedCrossRef Dolladille C, Ederhy S, Sassier M, Cautela J, Thuny F, Cohen AA, et al. Immune checkpoint inhibitor Rechallenge after immune-related adverse events in patients with Cancer. JAMA Oncol. 2020;6(6):865–71.PubMedCrossRef
7.
9.
go back to reference Perry RP, Kelley DE, LaTorre J. Synthesis and turnover of nuclear and cytoplasmic polyadenylic acid in mouse L cells. J Mol Biol. 1974;82(3):315–31.PubMedCrossRef Perry RP, Kelley DE, LaTorre J. Synthesis and turnover of nuclear and cytoplasmic polyadenylic acid in mouse L cells. J Mol Biol. 1974;82(3):315–31.PubMedCrossRef
10.
go back to reference Cui X, Liang Z, Shen L, Zhang Q, Bao S, Geng Y, et al. 5-Methylcytosine RNA methylation in Arabidopsis Thaliana. Mol Plant. 2017;10(11):1387–99.PubMedCrossRef Cui X, Liang Z, Shen L, Zhang Q, Bao S, Geng Y, et al. 5-Methylcytosine RNA methylation in Arabidopsis Thaliana. Mol Plant. 2017;10(11):1387–99.PubMedCrossRef
11.
go back to reference Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010;38(5):1415–30.PubMedCrossRef Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010;38(5):1415–30.PubMedCrossRef
12.
go back to reference David R, Burgess A, Parker B, Li J, Pulsford K, Sibbritt T, et al. Transcriptome-wide mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell. 2017;29(3):445–60.PubMedPubMedCentralCrossRef David R, Burgess A, Parker B, Li J, Pulsford K, Sibbritt T, et al. Transcriptome-wide mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell. 2017;29(3):445–60.PubMedPubMedCentralCrossRef
13.
go back to reference Huang W, Lan MD, Qi CB, Zheng SJ, Wei SZ, Yuan BF, et al. Formation and determination of the oxidation products of 5-methylcytosine in RNA. Chem Sci. 2016;7(8):5495–502.PubMedPubMedCentralCrossRef Huang W, Lan MD, Qi CB, Zheng SJ, Wei SZ, Yuan BF, et al. Formation and determination of the oxidation products of 5-methylcytosine in RNA. Chem Sci. 2016;7(8):5495–502.PubMedPubMedCentralCrossRef
14.
go back to reference Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278–1290.e1279.PubMedPubMedCentralCrossRef Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278–1290.e1279.PubMedPubMedCentralCrossRef
15.
go back to reference Guy MP, Phizicky EM. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 2014;11(12):1608–18.PubMedCrossRef Guy MP, Phizicky EM. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 2014;11(12):1608–18.PubMedCrossRef
16.
17.
go back to reference Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m(6)a(m) in the 5′ cap controls mRNA stability. Nature. 2017;541(7637):371–5.PubMedCrossRef Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m(6)a(m) in the 5′ cap controls mRNA stability. Nature. 2017;541(7637):371–5.PubMedCrossRef
18.
go back to reference Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–99.PubMedPubMedCentralCrossRef Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–99.PubMedPubMedCentralCrossRef
19.
go back to reference Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m(6) a reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61(4):507–19.PubMedCrossRef Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m(6) a reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61(4):507–19.PubMedCrossRef
20.
go back to reference Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27(9):1115–27.PubMedPubMedCentralCrossRef Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27(9):1115–27.PubMedPubMedCentralCrossRef
21.
go back to reference Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. M(6) a mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12(1):135.PubMedPubMedCentralCrossRef Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. M(6) a mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12(1):135.PubMedPubMedCentralCrossRef
22.
go back to reference Dahal U, Le K, Gupta M. RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Res. 2019;29(4):382–9.PubMedCrossRef Dahal U, Le K, Gupta M. RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Res. 2019;29(4):382–9.PubMedCrossRef
23.
go back to reference Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, et al. METTL3-mediated m(6) a modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69(7):1193–205.PubMedCrossRef Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, et al. METTL3-mediated m(6) a modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69(7):1193–205.PubMedCrossRef
24.
go back to reference Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020;19(1):106.PubMedPubMedCentralCrossRef Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020;19(1):106.PubMedPubMedCentralCrossRef
25.
go back to reference Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52(2):621–9.PubMed Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52(2):621–9.PubMed
26.
go back to reference Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. M(6) a demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 2020;19(1):3.PubMedPubMedCentralCrossRef Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. M(6) a demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 2020;19(1):3.PubMedPubMedCentralCrossRef
27.
go back to reference Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. M(6) a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548(7667):338–42.PubMedPubMedCentralCrossRef Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. M(6) a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548(7667):338–42.PubMedPubMedCentralCrossRef
28.
go back to reference Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6) a methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.PubMedPubMedCentralCrossRef Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6) a methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.PubMedPubMedCentralCrossRef
29.
go back to reference Gu X, Zhang Y, Li D, Cai H, Cai L, Xu Q. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal. 2020;69:109553.PubMedCrossRef Gu X, Zhang Y, Li D, Cai H, Cai L, Xu Q. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal. 2020;69:109553.PubMedCrossRef
30.
go back to reference Pan J, Huang Z, Xu Y. m5C RNA methylation regulators predict prognosis and regulate the immune microenvironment in lung squamous cell carcinoma. Front Oncol. 2021;11:657466.PubMedPubMedCentralCrossRef Pan J, Huang Z, Xu Y. m5C RNA methylation regulators predict prognosis and regulate the immune microenvironment in lung squamous cell carcinoma. Front Oncol. 2021;11:657466.PubMedPubMedCentralCrossRef
31.
go back to reference Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 2012;40(11):5023–33.PubMedPubMedCentralCrossRef Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 2012;40(11):5023–33.PubMedPubMedCentralCrossRef
32.
go back to reference Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m(5) C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res. 1999;27(15):3138–45.PubMedPubMedCentralCrossRef Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m(5) C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res. 1999;27(15):3138–45.PubMedPubMedCentralCrossRef
33.
go back to reference Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science (New York, NY). 2006;311(5759):395–8.CrossRef Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science (New York, NY). 2006;311(5759):395–8.CrossRef
34.
go back to reference Yang Y, Wang L, Han X, Yang WL, Zhang M, et al. RNA 5-Methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 2019;75(6):1188–1202.e1111.PubMedCrossRef Yang Y, Wang L, Han X, Yang WL, Zhang M, et al. RNA 5-Methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 2019;75(6):1188–1202.e1111.PubMedCrossRef
35.
36.
go back to reference Liu J, Yue Y, Han D, Wang X, Fu Y, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.PubMedCrossRef Liu J, Yue Y, Han D, Wang X, Fu Y, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.PubMedCrossRef
37.
go back to reference Su R, Dong L, Li Y, Gao M, He PC, et al. METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 2022;24(2):205–16.PubMedCrossRef Su R, Dong L, Li Y, Gao M, He PC, et al. METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 2022;24(2):205–16.PubMedCrossRef
38.
go back to reference Ping XL, Sun BF, Wang L, Xiao W, Yang X, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.PubMedPubMedCentralCrossRef Ping XL, Sun BF, Wang L, Xiao W, Yang X, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.PubMedPubMedCentralCrossRef
39.
go back to reference Lan T, Li H, Zhang D, Xu L, Liu H, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer. 2019;18(1):186.PubMedPubMedCentralCrossRef Lan T, Li H, Zhang D, Xu L, Liu H, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer. 2019;18(1):186.PubMedPubMedCentralCrossRef
40.
go back to reference Cai X, Chen Y, Man D, Yang B, Feng X, et al. RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discov. 2021;7(1):315.PubMedPubMedCentralCrossRef Cai X, Chen Y, Man D, Yang B, Feng X, et al. RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discov. 2021;7(1):315.PubMedPubMedCentralCrossRef
41.
go back to reference Tan C, Xia P, Zhang H, Xu K, Liu P, et al. YY1-targeted RBM15B promotes hepatocellular carcinoma cell proliferation and Sorafenib resistance by promoting TRAM2 expression in an m6A-dependent manner. Front Oncol. 2022;12:873020.PubMedPubMedCentralCrossRef Tan C, Xia P, Zhang H, Xu K, Liu P, et al. YY1-targeted RBM15B promotes hepatocellular carcinoma cell proliferation and Sorafenib resistance by promoting TRAM2 expression in an m6A-dependent manner. Front Oncol. 2022;12:873020.PubMedPubMedCentralCrossRef
42.
go back to reference Wen J, Lv R, Ma H, Shen H, He C, et al. Zc3h13 regulates nuclear RNA m(6) a methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69(6):1028–1038.e1026.PubMedPubMedCentralCrossRef Wen J, Lv R, Ma H, Shen H, He C, et al. Zc3h13 regulates nuclear RNA m(6) a methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69(6):1028–1038.e1026.PubMedPubMedCentralCrossRef
43.
go back to reference Zhang Y, Hua X, Shi H, Zhang L, Xiao H, et al. Systematic analyses of the role of prognostic and immunological EIF3A, a reader protein, in clear cell renal cell carcinoma. Cancer Cell Int. 2021;21(1):680.PubMedPubMedCentralCrossRef Zhang Y, Hua X, Shi H, Zhang L, Xiao H, et al. Systematic analyses of the role of prognostic and immunological EIF3A, a reader protein, in clear cell renal cell carcinoma. Cancer Cell Int. 2021;21(1):680.PubMedPubMedCentralCrossRef
44.
go back to reference Huang H, Weng H, Sun W, Qin X, Shi H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef Huang H, Weng H, Sun W, Qin X, Shi H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef
45.
go back to reference Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6.PubMedCrossRef Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6.PubMedCrossRef
46.
go back to reference Yu J, Chai P, Xie M, Ge S, Ruan J, et al. Histone lactylation drives oncogenesis by facilitating m(6) a reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22(1):85.PubMedPubMedCentralCrossRef Yu J, Chai P, Xie M, Ge S, Ruan J, et al. Histone lactylation drives oncogenesis by facilitating m(6) a reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22(1):85.PubMedPubMedCentralCrossRef
47.
go back to reference Chang G, Shi L, Ye Y, Shi H, Zeng L, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast Cancer brain metastasis. Cancer Cell. 2020;38(6):857–871.e857.PubMedPubMedCentralCrossRef Chang G, Shi L, Ye Y, Shi H, Zeng L, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast Cancer brain metastasis. Cancer Cell. 2020;38(6):857–871.e857.PubMedPubMedCentralCrossRef
48.
go back to reference Wang LC, Chen SH, Shen XL, Li DC, Liu HY, et al. M6A RNA methylation regulator HNRNPC contributes to tumorigenesis and predicts prognosis in Glioblastoma Multiforme. Front Oncol. 2020;10:536875.PubMedPubMedCentralCrossRef Wang LC, Chen SH, Shen XL, Li DC, Liu HY, et al. M6A RNA methylation regulator HNRNPC contributes to tumorigenesis and predicts prognosis in Glioblastoma Multiforme. Front Oncol. 2020;10:536875.PubMedPubMedCentralCrossRef
49.
go back to reference Jia G, Fu Y, Zhao X, Dai Q, Zheng G, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.PubMedPubMedCentralCrossRef Jia G, Fu Y, Zhao X, Dai Q, Zheng G, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.PubMedPubMedCentralCrossRef
50.
go back to reference Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef
51.
go back to reference Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, et al. METTL1-mediated m(7) G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81(16):3323–3338.e3314.PubMedCrossRef Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, et al. METTL1-mediated m(7) G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81(16):3323–3338.e3314.PubMedCrossRef
52.
go back to reference Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, et al. Mettl1/Wdr4-mediated m(7) G tRNA Methylome is required for Normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244–255.e245.PubMedPubMedCentralCrossRef Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, et al. Mettl1/Wdr4-mediated m(7) G tRNA Methylome is required for Normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244–255.e245.PubMedPubMedCentralCrossRef
53.
go back to reference Qin X, Li J, Hu W, Yang J. Machine learning K-means clustering algorithm for interpolative separable density fitting to accelerate hybrid functional calculations with numerical atomic orbitals. J Phys Chem A. 2020;124(48):10066–74.PubMedCrossRef Qin X, Li J, Hu W, Yang J. Machine learning K-means clustering algorithm for interpolative separable density fitting to accelerate hybrid functional calculations with numerical atomic orbitals. J Phys Chem A. 2020;124(48):10066–74.PubMedCrossRef
54.
go back to reference Alboukadel Kassambara, , MK, Biecek P: survminer: Drawing Survival Curves using 'ggplot2'. R package version 0.4.9. 2021. Alboukadel Kassambara, , MK, Biecek P: survminer: Drawing Survival Curves using 'ggplot2'. R package version 0.4.9. 2021.
55.
go back to reference T T: A Package for survival analysis in R_. R package ,version 3.2-7. 2020. T T: A Package for survival analysis in R_. R package ,version 3.2-7. 2020.
57.
go back to reference Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.PubMedPubMedCentralCrossRef Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.PubMedPubMedCentralCrossRef
58.
go back to reference Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One. 2014;9(9):e107468.PubMedPubMedCentralCrossRef Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One. 2014;9(9):e107468.PubMedPubMedCentralCrossRef
59.
go back to reference Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.PubMedPubMedCentralCrossRef Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.PubMedPubMedCentralCrossRef
60.
go back to reference Kassambara A: ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.4.0. 2020. Kassambara A: ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.4.0. 2020.
61.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.CrossRef
62.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.PubMedPubMedCentralCrossRef
63.
go back to reference Wei T, Simko V. R package 'corrplot': Visualization of a Correlation Matrix (Version 0.92); 2021. Wei T, Simko V. R package 'corrplot': Visualization of a Correlation Matrix (Version 0.92); 2021.
65.
go back to reference Carlson M: org. Hs.eg.db: Genome wide annotation for Human. R package version 3.12.0. 2020. Carlson M: org. Hs.eg.db: Genome wide annotation for Human. R package version 3.12.0. 2020.
66.
go back to reference Ishwaran H, U. B K: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC), R package version 2.12.0. 2021. Ishwaran H, U. B K: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC), R package version 2.12.0. 2021.
67.
68.
go back to reference Jr FEH: Rms: regression modeling strategies. R package version 6.2-0. 2021. Jr FEH: Rms: regression modeling strategies. R package version 6.2-0. 2021.
69.
go back to reference Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013;32(30):5381–97.PubMedCrossRef Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013;32(30):5381–97.PubMedCrossRef
70.
go back to reference Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.PubMedPubMedCentralCrossRef Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.PubMedPubMedCentralCrossRef
71.
go back to reference Yoshihara K, Kim H, Verhaak RG. Estimate: estimate of stromal and immune cells in malignant tumor tissues from: Expression Data; 2016. Yoshihara K, Kim H, Verhaak RG. Estimate: estimate of stromal and immune cells in malignant tumor tissues from: Expression Data; 2016.
72.
go back to reference Tang R, Zhang Y, Liang C, Xu J, Meng Q, Hua J, et al. The role of m6A-related genes in the prognosis and immune microenvironment of pancreatic adenocarcinoma. PeerJ. 2020;8:e9602.PubMedPubMedCentralCrossRef Tang R, Zhang Y, Liang C, Xu J, Meng Q, Hua J, et al. The role of m6A-related genes in the prognosis and immune microenvironment of pancreatic adenocarcinoma. PeerJ. 2020;8:e9602.PubMedPubMedCentralCrossRef
73.
go back to reference Meng Z, Yuan Q, Zhao J, Wang B, Li S, Offringa R, et al. The m(6)A-related mRNA signature predicts the prognosis of pancreatic Cancer patients. Mol Ther Oncolytics. 2020;17:460–70.PubMedPubMedCentralCrossRef Meng Z, Yuan Q, Zhao J, Wang B, Li S, Offringa R, et al. The m(6)A-related mRNA signature predicts the prognosis of pancreatic Cancer patients. Mol Ther Oncolytics. 2020;17:460–70.PubMedPubMedCentralCrossRef
74.
go back to reference Xu F, Zhang Z, Yuan M, Zhao Y, Zhou Y, Pei H, et al. M6A regulatory genes play an important role in the prognosis, progression and immune microenvironment of pancreatic adenocarcinoma. Cancer Investig. 2021;39(1):39–54.CrossRef Xu F, Zhang Z, Yuan M, Zhao Y, Zhou Y, Pei H, et al. M6A regulatory genes play an important role in the prognosis, progression and immune microenvironment of pancreatic adenocarcinoma. Cancer Investig. 2021;39(1):39–54.CrossRef
75.
go back to reference Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126–33.PubMedCrossRef Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126–33.PubMedCrossRef
76.
go back to reference Xia T, Wu X, Cao M, Zhang P, Shi G, Zhang J, et al. The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol Res Pract. 2019;215(11):152666.PubMedCrossRef Xia T, Wu X, Cao M, Zhang P, Shi G, Zhang J, et al. The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol Res Pract. 2019;215(11):152666.PubMedCrossRef
77.
go back to reference Tian J, Zhu Y, Rao M, Cai Y, Lu Z, Zou D, et al. N(6)-methyladenosine mRNA methylation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression. Gut. 2020;69(12):2180–92.PubMedCrossRef Tian J, Zhu Y, Rao M, Cai Y, Lu Z, Zou D, et al. N(6)-methyladenosine mRNA methylation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression. Gut. 2020;69(12):2180–92.PubMedCrossRef
78.
go back to reference Dougan SK. The pancreatic Cancer microenvironment. Cancer J (Sudbury, Mass). 2017;23(6):321–5.CrossRef Dougan SK. The pancreatic Cancer microenvironment. Cancer J (Sudbury, Mass). 2017;23(6):321–5.CrossRef
79.
go back to reference Dong L, Cao Y, Hou Y, Liu G. N(6) -methyladenosine RNA methylation: a novel regulator of the development and function of immune cells. J Cell Physiol. 2021. Dong L, Cao Y, Hou Y, Liu G. N(6) -methyladenosine RNA methylation: a novel regulator of the development and function of immune cells. J Cell Physiol. 2021.
80.
go back to reference Ni HH, Zhang L, Huang H, Dai SQ, Li J. Connecting METTL3 and intratumoural CD33(+) MDSCs in predicting clinical outcome in cervical cancer. J Transl Med. 2020;18(1):393.PubMedPubMedCentralCrossRef Ni HH, Zhang L, Huang H, Dai SQ, Li J. Connecting METTL3 and intratumoural CD33(+) MDSCs in predicting clinical outcome in cervical cancer. J Transl Med. 2020;18(1):393.PubMedPubMedCentralCrossRef
Metadata
Title
Comprehensive analysis of the prognosis and immune infiltration landscape of RNA methylation-related subtypes in pancreatic cancer
Authors
Siyuan Lu
Jie Hua
Jiang Liu
Miaoyan Wei
Chen Liang
Qingcai Meng
Bo Zhang
Xianjun Yu
Wei Wang
Jin Xu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2022
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-022-09863-z

Other articles of this Issue 1/2022

BMC Cancer 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine