Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Lung Cancer | Research article

Distinct signatures of lung cancer types: aberrant mucin O-glycosylation and compromised immune response

Authors: Marta Lucchetta, Isabelle da Piedade, Mohamed Mounir, Marina Vabistsevits, Thilde Terkelsen, Elena Papaleo

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Genomic initiatives such as The Cancer Genome Atlas (TCGA) contain data from -omics profiling of thousands of tumor samples, which may be used to decipher cancer signaling, and related alterations. Managing and analyzing data from large-scale projects, such as TCGA, is a demanding task. It is difficult to dissect the high complexity hidden in genomic data and to account for inter-tumor heterogeneity adequately.

Methods

In this study, we used a robust statistical framework along with the integration of diverse bioinformatic tools to analyze next-generation sequencing data from more than 1000 patients from two different lung cancer subtypes, i.e., the lung adenocarcinoma (LUAD) and the squamous cell carcinoma (LUSC).

Results

We used the gene expression data to identify co-expression modules and differentially expressed genes to discriminate between LUAD and LUSC. We identified a group of genes which could act as specific oncogenes or tumor suppressor genes in one of the two lung cancer types, along with two dual role genes. Our results have been validated against other transcriptomics data of lung cancer patients.

Conclusions

Our integrative approach allowed us to identify two key features: a substantial up-regulation of genes involved in O-glycosylation of mucins in LUAD, and a compromised immune response in LUSC. The immune-profile associated with LUSC might be linked to the activation of three oncogenic pathways, which promote the evasion of the antitumor immune response. Collectively, our results provide new future directions for the design of target therapies in lung cancer.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kadota K, Sima CS, Arcila ME, Hedvat C, Mark KG, Jones DR, et al. KRAS mutation is a significant prognostic factor in early stage lung adenocarcinoma. Am J Surg Pathol. 2016;40:1579–90.PubMedPubMedCentralCrossRef Kadota K, Sima CS, Arcila ME, Hedvat C, Mark KG, Jones DR, et al. KRAS mutation is a significant prognostic factor in early stage lung adenocarcinoma. Am J Surg Pathol. 2016;40:1579–90.PubMedPubMedCentralCrossRef
4.
go back to reference Kadota K, Yeh Y-C, D’Angelo SP, Moreira AL, Kuk D, Sima CS, et al. Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. Am J Surg Pathol. 2014;38:1118–27.PubMedPubMedCentralCrossRef Kadota K, Yeh Y-C, D’Angelo SP, Moreira AL, Kuk D, Sima CS, et al. Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. Am J Surg Pathol. 2014;38:1118–27.PubMedPubMedCentralCrossRef
5.
go back to reference Shea M, Costa DB, Rangachari D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Ther Adv Respir Dis. 2016;10:113–29.PubMedCrossRef Shea M, Costa DB, Rangachari D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Ther Adv Respir Dis. 2016;10:113–29.PubMedCrossRef
7.
go back to reference Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62:4963–7.PubMed Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62:4963–7.PubMed
8.
go back to reference Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R, et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer. 2011;129:355–64.PubMedCrossRef Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R, et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer. 2011;129:355–64.PubMedCrossRef
9.
go back to reference Navab R, Strumpf D, Bandarchi B, Zhu C, Pintilie M, Rohan V. Prognostic gene-expression signature of carcinoma- associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2011;108:7160–5.PubMedPubMedCentralCrossRef Navab R, Strumpf D, Bandarchi B, Zhu C, Pintilie M, Rohan V. Prognostic gene-expression signature of carcinoma- associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2011;108:7160–5.PubMedPubMedCentralCrossRef
10.
go back to reference Girard L, Rodriguez-Canales J, Behrens C, Thompson DM, Botros IW, Tang H, et al. An expression signature as an aid to the histologic classification of non-small cell lung cancer. Clin Cancer Res. 2016;22:4880–9.PubMedPubMedCentralCrossRef Girard L, Rodriguez-Canales J, Behrens C, Thompson DM, Botros IW, Tang H, et al. An expression signature as an aid to the histologic classification of non-small cell lung cancer. Clin Cancer Res. 2016;22:4880–9.PubMedPubMedCentralCrossRef
12.
go back to reference Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JMG, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 2006;66:7466–72.PubMedCrossRef Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JMG, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 2006;66:7466–72.PubMedCrossRef
13.
go back to reference Hamamoto J, Soejima K, Yoda S, Naoki K, Nakayama S, Satomi R, et al. Identification of microRNAs differentially expressed between lung squamous cell carcinoma and lung adenocarcinoma. Mol Med Rep. 2013;8:456–62.PubMedCrossRef Hamamoto J, Soejima K, Yoda S, Naoki K, Nakayama S, Satomi R, et al. Identification of microRNAs differentially expressed between lung squamous cell carcinoma and lung adenocarcinoma. Mol Med Rep. 2013;8:456–62.PubMedCrossRef
15.
go back to reference Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, et al. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinformatics. 2018;19:1–13.CrossRef Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, et al. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinformatics. 2018;19:1–13.CrossRef
16.
go back to reference Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
17.
go back to reference Gonzalez-Valbuena E-E, Treviño V. Metrics to estimate differential co- expression networks. BioData Min. 2017;10:32. Gonzalez-Valbuena E-E, Treviño V. Metrics to estimate differential co- expression networks. BioData Min. 2017;10:32.
18.
go back to reference Wolf DM, Lenburg ME, Yau C, Boudreau A, Van’t Veer LJ. Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity. PLoS One. 2014;9:e88309.PubMedPubMedCentralCrossRef Wolf DM, Lenburg ME, Yau C, Boudreau A, Van’t Veer LJ. Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity. PLoS One. 2014;9:e88309.PubMedPubMedCentralCrossRef
19.
go back to reference Gov E, Arga KY. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer. Sci Rep. 2017;7:1–10.CrossRef Gov E, Arga KY. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer. Sci Rep. 2017;7:1–10.CrossRef
20.
go back to reference Wang W, Hu B, Wang X, Chen J, Qian X, He Y. Candidate genes in gastric cancer identified by constructing a weighted gene co-expression network. PeerJ. 2018;6:e4692.PubMedPubMedCentralCrossRef Wang W, Hu B, Wang X, Chen J, Qian X, He Y. Candidate genes in gastric cancer identified by constructing a weighted gene co-expression network. PeerJ. 2018;6:e4692.PubMedPubMedCentralCrossRef
21.
go back to reference Shi Z, Derow CK, Zhang B. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. BMC Syst Biol. 2010;4:74.PubMedPubMedCentralCrossRef Shi Z, Derow CK, Zhang B. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. BMC Syst Biol. 2010;4:74.PubMedPubMedCentralCrossRef
22.
23.
go back to reference Federoff HJ, Meehan RR, Villoslada P, Baranzini S, Chung KF, Sterk PJ, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 2014;6:1–11.CrossRef Federoff HJ, Meehan RR, Villoslada P, Baranzini S, Chung KF, Sterk PJ, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 2014;6:1–11.CrossRef
24.
go back to reference Belling K, Rajpert-De Meyts E, Dalgaard MD, Jensen AB, Skakkebæk NE, Brunak S, et al. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity. Hum Mol Genet. 2017;26:1219–29.PubMedPubMedCentralCrossRef Belling K, Rajpert-De Meyts E, Dalgaard MD, Jensen AB, Skakkebæk NE, Brunak S, et al. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity. Hum Mol Genet. 2017;26:1219–29.PubMedPubMedCentralCrossRef
26.
go back to reference Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer genome Atlas (TCGA): an immeasurable source of knowledge. Wspolczesna Onkol. 2015;1A:A68–77.CrossRef Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer genome Atlas (TCGA): an immeasurable source of knowledge. Wspolczesna Onkol. 2015;1A:A68–77.CrossRef
27.
go back to reference Tian F, Zhao J, Fan X, Kang Z. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer genome Atlas database. J Thorac Dis. 2017;9:42–53.PubMedPubMedCentralCrossRef Tian F, Zhao J, Fan X, Kang Z. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer genome Atlas database. J Thorac Dis. 2017;9:42–53.PubMedPubMedCentralCrossRef
29.
go back to reference Cancer T, Atlas G, Collisson EA, Campbell JD, Brooks AN, Berger AH, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50 Available from: http://www.nature.com/doifinder/10.1038/nature13385%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/25079552%5Cn/link?doi=10.1038/nature13385.CrossRef Cancer T, Atlas G, Collisson EA, Campbell JD, Brooks AN, Berger AH, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50 Available from: http://​www.​nature.​com/​doifinder/​10.​1038/​nature13385%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/25079552%5Cn/link?doi=10.1038/nature13385.CrossRef
31.
go back to reference Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, et al. Reproducible RNA-seq analysis using recount2. Nat Biotechnol. 2017;35:319–21.PubMedPubMedCentralCrossRef Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, et al. Reproducible RNA-seq analysis using recount2. Nat Biotechnol. 2017;35:319–21.PubMedPubMedCentralCrossRef
34.
go back to reference Goldman M, Craft B, Swatloski T, Ellrott K, Cline M, Diekhans M, et al. The UCSC cancer genomics browser: update 2013. Nucleic Acids Res. 2013;41:951–9.CrossRef Goldman M, Craft B, Swatloski T, Ellrott K, Cline M, Diekhans M, et al. The UCSC cancer genomics browser: update 2013. Nucleic Acids Res. 2013;41:951–9.CrossRef
37.
38.
go back to reference Rahman M, Jackson LK, Johnson WE, Li DY, Bild AH, Piccolo SR. Alternative preprocessing of RNA-sequencing data in the Cancer genome Atlas leads to improved analysis results. Bioinformatics. 2015;31:3666–72.PubMedPubMedCentralCrossRef Rahman M, Jackson LK, Johnson WE, Li DY, Bild AH, Piccolo SR. Alternative preprocessing of RNA-sequencing data in the Cancer genome Atlas leads to improved analysis results. Bioinformatics. 2015;31:3666–72.PubMedPubMedCentralCrossRef
40.
go back to reference Huang Q, Wei H, Wu Z, Li L, Yao L. Preferentially expressed antigen of melanoma prevents lung Cancer metastasis. PLoS One. 2016;11:1–15. Huang Q, Wei H, Wu Z, Li L, Yao L. Preferentially expressed antigen of melanoma prevents lung Cancer metastasis. PLoS One. 2016;11:1–15.
41.
go back to reference Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2012;1:78–89.CrossRef Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2012;1:78–89.CrossRef
46.
go back to reference Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–21.PubMedPubMedCentralCrossRef Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–21.PubMedPubMedCentralCrossRef
48.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.PubMedPubMedCentralCrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.PubMedPubMedCentralCrossRef
49.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.PubMedPubMedCentralCrossRef
52.
go back to reference Zhang J, Haider S, Baran J, Cros A, Guberman JM, Hsu J, et al. BioMart: a data federation framework for large collaborative projects. Database. 2011;2011:1–15. Zhang J, Haider S, Baran J, Cros A, Guberman JM, Hsu J, et al. BioMart: a data federation framework for large collaborative projects. Database. 2011;2011:1–15.
53.
go back to reference Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–40.PubMedCrossRef Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–40.PubMedCrossRef
54.
go back to reference Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.PubMedPubMedCentralCrossRef Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.PubMedPubMedCentralCrossRef
57.
go back to reference Guangchuang Y, Qing-Yu H. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst. 2016;12:477–9.CrossRef Guangchuang Y, Qing-Yu H. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst. 2016;12:477–9.CrossRef
60.
go back to reference Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4.PubMedCrossRef Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4.PubMedCrossRef
65.
go back to reference Meister M, Belousov A, Xu E, Schnabel P, Warth A, Hoofmann H, et al. Intra-tumor heterogeneity of gene expression profiles in early stage non-small cell lung cancer. J Bioinforma Res Stud. 2014;1:1. Meister M, Belousov A, Xu E, Schnabel P, Warth A, Hoofmann H, et al. Intra-tumor heterogeneity of gene expression profiles in early stage non-small cell lung cancer. J Bioinforma Res Stud. 2014;1:1.
70.
go back to reference Finotello F, Di Camillo B. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics. 2015;14:130–42.PubMedCrossRef Finotello F, Di Camillo B. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics. 2015;14:130–42.PubMedCrossRef
72.
go back to reference Kao S, Shiau CK, Gu DL, Ho CM, Su WH, Chen CF, et al. IGDB.NSCLC: Integrated genomic database of non-small cell lung cancer. Nucleic Acids Res. 2012;40:972–7.CrossRef Kao S, Shiau CK, Gu DL, Ho CM, Su WH, Chen CF, et al. IGDB.NSCLC: Integrated genomic database of non-small cell lung cancer. Nucleic Acids Res. 2012;40:972–7.CrossRef
73.
go back to reference Edge SB, Compton CC. The american joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.PubMedCrossRef Edge SB, Compton CC. The american joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.PubMedCrossRef
75.
go back to reference Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2015;44:D0123-D1031.PubMedPubMedCentralCrossRef Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2015;44:D0123-D1031.PubMedPubMedCentralCrossRef
80.
go back to reference Su C, Zhou C, Zhou S, Xu J. Serum cytokine levels in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Med Oncol. 2011;28:1453–7.PubMedCrossRef Su C, Zhou C, Zhou S, Xu J. Serum cytokine levels in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Med Oncol. 2011;28:1453–7.PubMedCrossRef
83.
go back to reference Lennon FE, Salgia R, Mambetsariev N, Mirzapoiazova T, Mambetsariev B, Singleton PA, et al. HABP2 is a novel regulator of Hyaluronan-mediated human lung Cancer progression. Front Oncol. 2015;5:1–12. Lennon FE, Salgia R, Mambetsariev N, Mirzapoiazova T, Mambetsariev B, Singleton PA, et al. HABP2 is a novel regulator of Hyaluronan-mediated human lung Cancer progression. Front Oncol. 2015;5:1–12.
85.
go back to reference Rivenbark AG, Coleman WB. Epigenetic regulation of cystatins in cancer. Front Biosci. 2009;14:453–62.CrossRef Rivenbark AG, Coleman WB. Epigenetic regulation of cystatins in cancer. Front Biosci. 2009;14:453–62.CrossRef
88.
go back to reference Polakis P. Wnt signaling in Cancer. Cold Spring Harb Perspect Biol. 2012;4:1–13.CrossRef Polakis P. Wnt signaling in Cancer. Cold Spring Harb Perspect Biol. 2012;4:1–13.CrossRef
90.
go back to reference Brooks DLP, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer [internet]. Mol Cancer. 2016;15:1–19. Available from:. https://doi.org/10.1186/s12943-016-0510-x.CrossRef Brooks DLP, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer [internet]. Mol Cancer. 2016;15:1–19. Available from:. https://​doi.​org/​10.​1186/​s12943-016-0510-x.CrossRef
91.
go back to reference Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell. 2018;173:338–354.e15.PubMedPubMedCentralCrossRef Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell. 2018;173:338–354.e15.PubMedPubMedCentralCrossRef
92.
go back to reference Gong G, Woo J, Lee J, Kim MS, Jang SJ, Kang SK, et al. Expression of aquaporin 5 (AQP5) promotes tumor invasion in human non small cell lung Cancer. PLoS One. 2008;3:e2162.PubMedPubMedCentralCrossRef Gong G, Woo J, Lee J, Kim MS, Jang SJ, Kang SK, et al. Expression of aquaporin 5 (AQP5) promotes tumor invasion in human non small cell lung Cancer. PLoS One. 2008;3:e2162.PubMedPubMedCentralCrossRef
105.
go back to reference Garcia EP, Tiscornia I, Libisch G, Trajtenberg F, Bollati-Fogolin M, Rodriguez E, et al. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells. Int J Oncol. 2016;48:2113–23.PubMedCrossRef Garcia EP, Tiscornia I, Libisch G, Trajtenberg F, Bollati-Fogolin M, Rodriguez E, et al. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells. Int J Oncol. 2016;48:2113–23.PubMedCrossRef
Metadata
Title
Distinct signatures of lung cancer types: aberrant mucin O-glycosylation and compromised immune response
Authors
Marta Lucchetta
Isabelle da Piedade
Mohamed Mounir
Marina Vabistsevits
Thilde Terkelsen
Elena Papaleo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5965-x

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine