Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Human Papillomavirus | Research article

Burden and genotype distribution of high-risk Human Papillomavirus infection and cervical cytology abnormalities at selected obstetrics and gynecology clinics of Addis Ababa, Ethiopia

Authors: Kirubel Eshetu Ali, Ibrahim Ali Mohammed, Mesfin Nigussie Difabachew, Dawit Solomon Demeke, Tasew Haile, Robert-Jan ten Hove, Tsegaye Hailu Kumssa, Zufan Lakew Woldu, Eshetu Lemma Haile, Kassu Desta Tullu

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Human papillomavirus is recognized as a major cause of cervical cancer. It is estimated that annually, 7,095 women are diagnosed with cervical cancer and 4,732 die from the disease in Ethiopia. Understanding that the screening practice is very poor and the coverage is very limited, this disease burden is one of the major public health agendas in Ethiopia. This study aimed to assess the burden and genotype distribution of high-risk human papillomavirus (HR HPV) infection and cervical cytology abnormalities at selected obstetrics and gynecology clinics of Addis Ababa, Ethiopia.

Methods

An institutional-based cross-sectional study design was employed from June to October 2015. Cervical samples were collected from 366 participants based on inclusion criteria. HR HPV DNA was analyzed using an Abbott Real-Time PCR system, and cervical cytology screening was performed using the conventional Pap-smear technique. Data were entered in to Epi-data version 13 and analyzed using STATA version 11.

Results

The overall HR HPV burden and abnormal cytology were 13.7 and 13.1%, respectively. The majority of HR HPV types were other than types 16 and 18. Of the total abnormal cytology results, 81.3% were low-grade squamous intraepithelial lesions (LSILs), and 12.5 and 6.3% were atypical squamous cells of undetermined significance (ASCUS) and high-grade squamous intraepithelial lesions (HSILs), respectively. Residence, occupation, and HIV serostatus were significantly associated with HR HPV infection. Among the variables, age, age at first marriage, and education were the only ones associated with cervical cytology abnormalities. The overall agreement between the real-time PCR and Pap cytology screening methods was 78.96% (Kappa value of 0.12, 95% CI (0.00–0.243), P = 0.01).

Conclusions

Non-16/18 HR HPV genotypes represented the largest proportion of HR HPV infections in this study. Women without cervical cytology abnormalities had the highest frequency of HR HPV infection. A large-scale community-based cohort study shall be designed and implemented to further identifying the persistent genotype and assessing the changes in cervical epithelial cell lines.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shaniqua L, Jeanne M. Update on prevention and screening of cervical cancer. Baishideng publishing group Inc. World J ClinOncol. 2014;5(4):744–52. Shaniqua L, Jeanne M. Update on prevention and screening of cervical cancer. Baishideng publishing group Inc. World J ClinOncol. 2014;5(4):744–52.
2.
go back to reference Cervical cancer action. Progress in cervical cancer prevention; the CCA report. 2012. Cervical cancer action. Progress in cervical cancer prevention; the CCA report. 2012.
3.
go back to reference Xavier FB, You-Lin Q, and Xavier C. The epidemiology of human papillomavirus infection and its association with cervical cancer. Int J Gynecol Obstet. Elsevier Ireland Ltd 2006;94:8–21. Xavier FB, You-Lin Q, and Xavier C. The epidemiology of human papillomavirus infection and its association with cervical cancer. Int J Gynecol Obstet. Elsevier Ireland Ltd 2006;94:8–21.
4.
go back to reference Center of Disease control and prevention. Epidemiology and prevention of vaccine-preventable diseases. 2015. Center of Disease control and prevention. Epidemiology and prevention of vaccine-preventable diseases. 2015.
5.
go back to reference Adeola F, Manga M. Utilization of human papillomavirus (HPV) DNA detection for cervical cancer screening in developing countries: a myth or reality. Afr J Micro Research. 2013;7(20):2135–9.CrossRef Adeola F, Manga M. Utilization of human papillomavirus (HPV) DNA detection for cervical cancer screening in developing countries: a myth or reality. Afr J Micro Research. 2013;7(20):2135–9.CrossRef
6.
go back to reference Hugo De V, Laia A, Charles L, Caria JC, Vikrant S, Cecily B, et al. The burden of Human Papilloma Virus infections and related diseases in sub-Saharan Africa. NIH Public Health Access. 2013;31(05):32–46. Hugo De V, Laia A, Charles L, Caria JC, Vikrant S, Cecily B, et al. The burden of Human Papilloma Virus infections and related diseases in sub-Saharan Africa. NIH Public Health Access. 2013;31(05):32–46.
7.
go back to reference ICO Information center on HPV and Cancer-Ethiopia. Human Papilloma virus and related cancers. Fact sheet.2014. ICO Information center on HPV and Cancer-Ethiopia. Human Papilloma virus and related cancers. Fact sheet.2014.
8.
go back to reference Federal Democratic Republic of Ethiopia Ministry of Health. Guideline for cervical cancer prevention and control in Ethiopia. 2015. Federal Democratic Republic of Ethiopia Ministry of Health. Guideline for cervical cancer prevention and control in Ethiopia. 2015.
9.
go back to reference Farhad A, Rainer K, Belaynew W. Understanding cervical cancer in the context of developing countries. Ann Trop Med Public Health. 2012;5:1.CrossRef Farhad A, Rainer K, Belaynew W. Understanding cervical cancer in the context of developing countries. Ann Trop Med Public Health. 2012;5:1.CrossRef
10.
go back to reference Silvia de S, Mieria D, Xavier C, Gary C, Laia B, Nubia M, et al. World-wide prevalence and genotype distribution of cervical human papilloma virus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis. 2007;7(7):453–9.CrossRef Silvia de S, Mieria D, Xavier C, Gary C, Laia B, Nubia M, et al. World-wide prevalence and genotype distribution of cervical human papilloma virus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis. 2007;7(7):453–9.CrossRef
11.
go back to reference Karly S, Silvia de S, Philippe M. Epidemiology and prevention of human papillomavirus and cervical cancer in sub-Saharan Africa: a comprehensive review. Trop Med Int Health. 2009;14(10):1287–302.CrossRef Karly S, Silvia de S, Philippe M. Epidemiology and prevention of human papillomavirus and cervical cancer in sub-Saharan Africa: a comprehensive review. Trop Med Int Health. 2009;14(10):1287–302.CrossRef
12.
go back to reference Nweke GI, Banjo AA, Abdulkareem FB, Nwadike UV. Prevalence of human papilloma virus DNA in HIV positive women in Lagos University teaching hospital (LUTH) Lagos, Nigeria. Br J Micro Res. 2013;3(3):400–13.CrossRef Nweke GI, Banjo AA, Abdulkareem FB, Nwadike UV. Prevalence of human papilloma virus DNA in HIV positive women in Lagos University teaching hospital (LUTH) Lagos, Nigeria. Br J Micro Res. 2013;3(3):400–13.CrossRef
13.
go back to reference Richter K, Path FC, Becker P, Horton A, Dreyer G. Age-specific prevalence of cervical human papillomavirus infection and cytological abnormalities in women in Gauteng Province, South Africa. SAMJ. 2013;103(5):313–7.CrossRef Richter K, Path FC, Becker P, Horton A, Dreyer G. Age-specific prevalence of cervical human papillomavirus infection and cytological abnormalities in women in Gauteng Province, South Africa. SAMJ. 2013;103(5):313–7.CrossRef
14.
go back to reference Sami-Ramzi LB, Christof P, Mauritis NC, Hartmut G, Ralph JL. Cervical human papilloma virus prevalence and genotype distribution among hybrid capture 2 positive women 15 to 64 years of age in the Gurage zone, rural Ethiopia. Infect Agents Cancer. 2014;9:33.CrossRef Sami-Ramzi LB, Christof P, Mauritis NC, Hartmut G, Ralph JL. Cervical human papilloma virus prevalence and genotype distribution among hybrid capture 2 positive women 15 to 64 years of age in the Gurage zone, rural Ethiopia. Infect Agents Cancer. 2014;9:33.CrossRef
15.
go back to reference Ruland R, Prugger C, Schiffer R, Regidor M, Lellé RJ. Prevalence of human papilloma virus infection in women in rural Ethiopia Attat hospital. Eur J Epidemiol. 2006;21:727.CrossRef Ruland R, Prugger C, Schiffer R, Regidor M, Lellé RJ. Prevalence of human papilloma virus infection in women in rural Ethiopia Attat hospital. Eur J Epidemiol. 2006;21:727.CrossRef
16.
go back to reference Bekele A, Baay M, Mekonnen Z, Suleman S, Chatterjee S. Human papillomavirus type distribution among women with cervical pathology – a study over 4 years at Jimma hospital, Southwest Ethiopia. Tropical Med Int Health. 2010;15(8):890–3.CrossRef Bekele A, Baay M, Mekonnen Z, Suleman S, Chatterjee S. Human papillomavirus type distribution among women with cervical pathology – a study over 4 years at Jimma hospital, Southwest Ethiopia. Tropical Med Int Health. 2010;15(8):890–3.CrossRef
17.
go back to reference Muluken D, Solomon G, Yirgue G, Dawit W, Bekure T, Wondwossen E, et al. Human papilloma virus infection and genotype distribution in relation to cervical cytology abnormalities and HIV-1 infection at TikurAnbessa teaching hospital. Addis Ababa, Ethiopia: Addis Ababa University Institutional Repository; 2010. Muluken D, Solomon G, Yirgue G, Dawit W, Bekure T, Wondwossen E, et al. Human papilloma virus infection and genotype distribution in relation to cervical cytology abnormalities and HIV-1 infection at TikurAnbessa teaching hospital. Addis Ababa, Ethiopia: Addis Ababa University Institutional Repository; 2010.
18.
go back to reference Gary C, Silvia F, Mieria D, Nubia M, Luisa LV. HPV-type distribution in women with and without cervical neoplastic diseases. Science Direct. 2006:S3/26–34. Gary C, Silvia F, Mieria D, Nubia M, Luisa LV. HPV-type distribution in women with and without cervical neoplastic diseases. Science Direct. 2006:S3/26–34.
19.
go back to reference Ebba A, Abrham A, Muntasir EH, Ibrahim EH, Laerence Y, Wude M, et al. Genotyping of human papilloma virus in paraffin embedded cervical tissue samples from women in Ethiopia and Sudan. J Med Virol. 2013;85:282–7.CrossRef Ebba A, Abrham A, Muntasir EH, Ibrahim EH, Laerence Y, Wude M, et al. Genotyping of human papilloma virus in paraffin embedded cervical tissue samples from women in Ethiopia and Sudan. J Med Virol. 2013;85:282–7.CrossRef
20.
go back to reference Mohammed MM, Adeola F, Yusuf MA, Aliyu UE, Danladi BA, Hamidu UP, et al. Epidemiological patterns of cervical human papilloma virus infection among women presenting for cervical cancer screening in North-Eastern Nigeria. Infectious Agents Cancer. 2015;10:39.CrossRef Mohammed MM, Adeola F, Yusuf MA, Aliyu UE, Danladi BA, Hamidu UP, et al. Epidemiological patterns of cervical human papilloma virus infection among women presenting for cervical cancer screening in North-Eastern Nigeria. Infectious Agents Cancer. 2015;10:39.CrossRef
21.
go back to reference Megan AC, Julia CG, Kayode OA, Nicolas AW, Akinfolarin CA, Sholom W, et al. A population-based cross-sectional study of age-specific risk factors for high risk human papillomavirus prevalence in rural Nigeria. Infect Agents Cancer. 2011;6(12):1–8. Megan AC, Julia CG, Kayode OA, Nicolas AW, Akinfolarin CA, Sholom W, et al. A population-based cross-sectional study of age-specific risk factors for high risk human papillomavirus prevalence in rural Nigeria. Infect Agents Cancer. 2011;6(12):1–8.
22.
go back to reference Abel G, Ayalew A, Gizachew A. The prevalence of pre-cancerous cervical cancer lesion among HIV-infected women in southern Ethiopia: a cross sectional study. PLoS One. 2013;8:12.CrossRef Abel G, Ayalew A, Gizachew A. The prevalence of pre-cancerous cervical cancer lesion among HIV-infected women in southern Ethiopia: a cross sectional study. PLoS One. 2013;8:12.CrossRef
23.
go back to reference Laia B, Mireia D, Xavier C, Elena F, Xavier F. And Selviade’S. Cervical human papilloma virus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis. 2010;202(12):1789–99.CrossRef Laia B, Mireia D, Xavier C, Elena F, Xavier F. And Selviade’S. Cervical human papilloma virus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis. 2010;202(12):1789–99.CrossRef
24.
go back to reference Quamrun N, Farhana S, Andil A, Jessica YI, Mustafizur R, Fatema K, et al. Genital human papilloma virus infection among women in Bangladish. PLoS One. 2014;9:10. Quamrun N, Farhana S, Andil A, Jessica YI, Mustafizur R, Fatema K, et al. Genital human papilloma virus infection among women in Bangladish. PLoS One. 2014;9:10.
25.
go back to reference Long Fu XI, Papa T, Cathy W, Stephen E, Birama D, et al. Prevalence of specific types of human papillomavirus and cervical squamous intraepithelial lesions in consecutive, previously unscreened, west-African women over 35 years of age. Int J Cancer. 2003;103:803–9.CrossRef Long Fu XI, Papa T, Cathy W, Stephen E, Birama D, et al. Prevalence of specific types of human papillomavirus and cervical squamous intraepithelial lesions in consecutive, previously unscreened, west-African women over 35 years of age. Int J Cancer. 2003;103:803–9.CrossRef
26.
go back to reference Nicole JP, Nienke JV, Danielle AM, Peter JF, Chris JL, et al. HPV positive women with normal cytology remain at increased risk of CIN3 after a negative repeat HPV test. Br J Cancer. 2017;117:1557–156.CrossRef Nicole JP, Nienke JV, Danielle AM, Peter JF, Chris JL, et al. HPV positive women with normal cytology remain at increased risk of CIN3 after a negative repeat HPV test. Br J Cancer. 2017;117:1557–156.CrossRef
Metadata
Title
Burden and genotype distribution of high-risk Human Papillomavirus infection and cervical cytology abnormalities at selected obstetrics and gynecology clinics of Addis Ababa, Ethiopia
Authors
Kirubel Eshetu Ali
Ibrahim Ali Mohammed
Mesfin Nigussie Difabachew
Dawit Solomon Demeke
Tasew Haile
Robert-Jan ten Hove
Tsegaye Hailu Kumssa
Zufan Lakew Woldu
Eshetu Lemma Haile
Kassu Desta Tullu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5953-1

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine