Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Research article

Best fitting tumor growth models of the von Bertalanffy-PütterType

Authors: Manfred Kühleitner, Norbert Brunner, Werner-Georg Nowak, Katharina Renner-Martin, Klaus Scheicher

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Longitudinal studies of tumor volume have used certain named mathematical growth models. The Bertalanffy-Pütter differential equation unifies them: It uses five parameters, amongst them two exponents related to tumor metabolism and morphology. Each exponent-pair defines a unique three-parameter model of the Bertalanffy-Pütter type, and the above-mentioned named models correspond to specific exponent-pairs. Amongst these models we seek the best fitting one.

Method

The best fitting model curve within the Bertalanffy-Pütter class minimizes the sum of squared errors (SSE). We investigate also near-optimal model curves; their SSE is at most a certain percentage (e.g. 1%) larger than the minimal SSE. Models with near-optimal curves are visualized by the region of their near-optimal exponent pairs. While there is barely a visible difference concerning the goodness of fit between the best fitting and the near-optimal model curves, there are differences in the prognosis, whence the near-optimal models are used to assess the uncertainty of extrapolation.

Results

For data about the growth of an untreated tumor we found the best fitting growth model which reduced SSE by about 30% compared to the hitherto best fit. In order to analyze the uncertainty of prognosis, we repeated the search for the optimal and near-optimal exponent-pairs for the initial segments of the data (meaning the subset of the data for the first n days) and compared the prognosis based on these models with the actual data (i.e. the data for the remaining days). The optimal exponent-pairs and the regions of near-optimal exponent-pairs depended on how many data-points were used. Further, the regions of near-optimal exponent-pairs were larger for the first initial segments, where fewer data were used.

Conclusion

While for each near optimal exponent-pair its best fitting model curve remained close to the fitted data points, the prognosis using these model curves differed widely for the remaining data, whence e.g. the best fitting model for the first 65 days of growth was not capable to inform about tumor size for the remaining 49 days. For the present data, prognosis appeared to be feasible for a time span of ten days, at most.
Literature
1.
go back to reference Schwartz M. A biomathematical approach to clinical tumor growth. Cancer. 1961;14:1272–94.CrossRef Schwartz M. A biomathematical approach to clinical tumor growth. Cancer. 1961;14:1272–94.CrossRef
2.
go back to reference Bloom HJ, Richardson WW, Harries EJ. Natural history of untreated breast cancer. Comparison of untreated and treated cases according to histological grade of malignancy. Br Med J. 1962;2:213–21.CrossRef Bloom HJ, Richardson WW, Harries EJ. Natural history of untreated breast cancer. Comparison of untreated and treated cases according to histological grade of malignancy. Br Med J. 1962;2:213–21.CrossRef
3.
4.
go back to reference Wheldon, T.E. Mathematical models in Cancer research, Bristol (UK): Adam Hilger1988. Wheldon, T.E. Mathematical models in Cancer research, Bristol (UK): Adam Hilger1988.
5.
go back to reference Michor F. Evolutionary dynamics of cancer. Doctoral thesis. Cambridge: Harvard Univ; 2005. Michor F. Evolutionary dynamics of cancer. Doctoral thesis. Cambridge: Harvard Univ; 2005.
6.
go back to reference Gerlee P. The model muddle: in search of tumor growth Laws. Cancer Res. 2013;73:2407–11.CrossRef Gerlee P. The model muddle: in search of tumor growth Laws. Cancer Res. 2013;73:2407–11.CrossRef
7.
8.
go back to reference Norton L, Simon R. Tumor size, sensitivity to therapy, and the design of cancer treatment. Cancer Treatment Reports. 1977;61:1307–17.PubMed Norton L, Simon R. Tumor size, sensitivity to therapy, and the design of cancer treatment. Cancer Treatment Reports. 1977;61:1307–17.PubMed
9.
go back to reference Hillen T, Enderling H, Hahnfeldt P. The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull Math Biol. 2013;2013(75):161–84.CrossRef Hillen T, Enderling H, Hahnfeldt P. The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull Math Biol. 2013;2013(75):161–84.CrossRef
10.
go back to reference Poleszczuk, J., Howard, R., Moros, E.G., Latifi, K., Caudell, J.J., Enderling, H. Predicting patient-specific radiotherapy protocols based on mathematical model choice for Proliferation Saturation Index, Bulletin of Mathematical Biology 2017, 80: 1195–1206. Published online: DOI https://doi.org/10.1007/s11538-017-0279-0. Poleszczuk, J., Howard, R., Moros, E.G., Latifi, K., Caudell, J.J., Enderling, H. Predicting patient-specific radiotherapy protocols based on mathematical model choice for Proliferation Saturation Index, Bulletin of Mathematical Biology 2017, 80: 1195–1206. Published online: DOI https://​doi.​org/​10.​1007/​s11538-017-0279-0.
11.
go back to reference Bertalanffy, L.v. Quantitative laws in metabolism and growth. Q Rev Biol 1957; 32: 217–231. Bertalanffy, L.v. Quantitative laws in metabolism and growth. Q Rev Biol 1957; 32: 217–231.
12.
go back to reference Pütter A. Studien über physiologische Ähnlichkeit. VI. Wachstumsähnlichkeiten. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere. 1920;180:298–340.CrossRef Pütter A. Studien über physiologische Ähnlichkeit. VI. Wachstumsähnlichkeiten. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere. 1920;180:298–340.CrossRef
13.
go back to reference Ohnishi S, Yamakawa T, Akamine T. On the analytical solution for the Pütter-Bertalanffy growth equation. J Theor Biol. 2014;343:174–7.CrossRef Ohnishi S, Yamakawa T, Akamine T. On the analytical solution for the Pütter-Bertalanffy growth equation. J Theor Biol. 2014;343:174–7.CrossRef
15.
go back to reference Verhulst PF. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique (Ghent). 1838;10:113–21. Verhulst PF. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique (Ghent). 1838;10:113–21.
16.
go back to reference Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc London. 1832;123:513–85. Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc London. 1832;123:513–85.
17.
go back to reference Marusic M, Bajzer Z. Generalized two-parameter equations of growth. J Math Anal Appl. 1993;179:446–62.CrossRef Marusic M, Bajzer Z. Generalized two-parameter equations of growth. J Math Anal Appl. 1993;179:446–62.CrossRef
18.
go back to reference Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290–300.CrossRef Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290–300.CrossRef
19.
go back to reference Acemogulu D. Introduction to modern economic growth. University Press: Princeton; 2008. Acemogulu D. Introduction to modern economic growth. University Press: Princeton; 2008.
20.
go back to reference Abreu M. Neoclassical regional growth models. In: Fischer M, Nijkamp P, editors. Handbook of regional sciences. Berlin: Springer Verlag; 2019. Abreu M. Neoclassical regional growth models. In: Fischer M, Nijkamp P, editors. Handbook of regional sciences. Berlin: Springer Verlag; 2019.
21.
go back to reference Solow RM. A contribution to the theory of economic growth. Q J Econ. 1956;70:65–94.CrossRef Solow RM. A contribution to the theory of economic growth. Q J Econ. 1956;70:65–94.CrossRef
22.
go back to reference Swan TW. Economic growth and capital accumulation. Economic Record. 1956;32:334–61.CrossRef Swan TW. Economic growth and capital accumulation. Economic Record. 1956;32:334–61.CrossRef
23.
go back to reference West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth. Nature. 2001;413:628–31.CrossRef West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth. Nature. 2001;413:628–31.CrossRef
26.
go back to reference Pauly D. The relationship between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Reports on Marine Research (Berichte der deutschen wissenschaftlichen Kommission für Meeresforschung). 1981;28:25–282. Pauly D. The relationship between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Reports on Marine Research (Berichte der deutschen wissenschaftlichen Kommission für Meeresforschung). 1981;28:25–282.
28.
go back to reference Calder WA III. Size, function, and life history. Cambridge: Harvard Univ. Press; 1985. Calder WA III. Size, function, and life history. Cambridge: Harvard Univ. Press; 1985.
29.
go back to reference Jacobs, J., Rockne, R.C., Hawkins-Daarud, A.J., Jackson, P.R., Johnston, S.K., Kinahan, P., Swanson, K.R. Improved model prediction of glioma growth utilizing tissue-specific boundary effects. Mathematical Biosciences 2019, 312: 59–66. Published online: DOI https://doi.org/10.1016/j.mbs.2019.04.004. Jacobs, J., Rockne, R.C., Hawkins-Daarud, A.J., Jackson, P.R., Johnston, S.K., Kinahan, P., Swanson, K.R. Improved model prediction of glioma growth utilizing tissue-specific boundary effects. Mathematical Biosciences 2019, 312: 59–66. Published online: DOI https://​doi.​org/​10.​1016/​j.​mbs.​2019.​04.​004.
30.
go back to reference Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin. P., Wise, S.M., Cristini, V. Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 2010, 23: R1-R9. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin. P., Wise, S.M., Cristini, V. Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 2010, 23: R1-R9.
33.
35.
go back to reference Worschech, A., Chen, N., Yu, Y.A., Zhang, Q., Pos, Z., Weibel, S., Raab, V., Sabatino, M., Monaco, A., Liu, H., Monsurró, V., Buller, R.M., Stroncek, D.F.,Wang, E., Szalay, A.A., Marincola, F.M. Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics 2009; 10: 301. Published online DOI https://doi.org/10.1186/1471-2164-10-301. Worschech, A., Chen, N., Yu, Y.A., Zhang, Q., Pos, Z., Weibel, S., Raab, V., Sabatino, M., Monaco, A., Liu, H., Monsurró, V., Buller, R.M., Stroncek, D.F.,Wang, E., Szalay, A.A., Marincola, F.M. Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics 2009; 10: 301. Published online DOI https://​doi.​org/​10.​1186/​1471-2164-10-301.
39.
go back to reference Evans, D.L., Drew, J.H., Leemis, L.M. The Distribution of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling Test Statistics for Exponential Populations with Estimated Parameters. In Glen, A.G., Leemis, L.M. (Eds.) Computational Probability Applications. New York: Springer Publishing 2017, 165–190. Evans, D.L., Drew, J.H., Leemis, L.M. The Distribution of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling Test Statistics for Exponential Populations with Estimated Parameters. In Glen, A.G., Leemis, L.M. (Eds.) Computational Probability Applications. New York: Springer Publishing 2017, 165–190.
40.
go back to reference Akaike H. A new look at the statistical model identification. IEEE Trans Automatic Control. 1974;19:716–23.CrossRef Akaike H. A new look at the statistical model identification. IEEE Trans Automatic Control. 1974;19:716–23.CrossRef
41.
go back to reference Burnham KP, Anderson DR. Model selection and multi-model inference: a practical information-theoretic approach. Berlin: Springer Verlag; 2002. Burnham KP, Anderson DR. Model selection and multi-model inference: a practical information-theoretic approach. Berlin: Springer Verlag; 2002.
42.
go back to reference Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford: Univ. Press; 2003. Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford: Univ. Press; 2003.
43.
go back to reference Vidal RVV. Applied simulated annealing. Lecture notes in economics and mathematical systems. Berlin: Springer Verlag; 1993.CrossRef Vidal RVV. Applied simulated annealing. Lecture notes in economics and mathematical systems. Berlin: Springer Verlag; 1993.CrossRef
Metadata
Title
Best fitting tumor growth models of the von Bertalanffy-PütterType
Authors
Manfred Kühleitner
Norbert Brunner
Werner-Georg Nowak
Katharina Renner-Martin
Klaus Scheicher
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5911-y

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine