Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research Article

Differences in predictions of ODE models of tumor growth: a cautionary example

Authors: Hope Murphy, Hana Jaafari, Hana M. Dobrovolny

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

While mathematical models are often used to predict progression of cancer and treatment outcomes, there is still uncertainty over how to best model tumor growth. Seven ordinary differential equation (ODE) models of tumor growth (exponential, Mendelsohn, logistic, linear, surface, Gompertz, and Bertalanffy) have been proposed, but there is no clear guidance on how to choose the most appropriate model for a particular cancer.

Methods

We examined all seven of the previously proposed ODE models in the presence and absence of chemotherapy. We derived equations for the maximum tumor size, doubling time, and the minimum amount of chemotherapy needed to suppress the tumor and used a sample data set to compare how these quantities differ based on choice of growth model.

Results

We find that there is a 12-fold difference in predicting doubling times and a 6-fold difference in the predicted amount of chemotherapy needed for suppression depending on which growth model was used.

Conclusion

Our results highlight the need for careful consideration of model assumptions when developing mathematical models for use in cancer treatment planning.
Literature
2.
3.
go back to reference Carlotto A, Hogsett VL, Maiorini EM, Razulis JG, Sonis ST. The economic burden of toxicities associated with cancer treatment: Review of the literature and analysis of nausea and vomiting, diarrhoea, oral mucositis and fatigue. Pharmacoecon. 2013; 31(9):753–66. doi:10.1007/s40273-013-0081-2.CrossRef Carlotto A, Hogsett VL, Maiorini EM, Razulis JG, Sonis ST. The economic burden of toxicities associated with cancer treatment: Review of the literature and analysis of nausea and vomiting, diarrhoea, oral mucositis and fatigue. Pharmacoecon. 2013; 31(9):753–66. doi:10.​1007/​s40273-013-0081-2.CrossRef
6.
go back to reference Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L. Trial watch oncolytic viruses for cancer therapy. Oncoimmunology. 2014; 3:28694. doi:10.4161/onci.28694.CrossRef Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L. Trial watch oncolytic viruses for cancer therapy. Oncoimmunology. 2014; 3:28694. doi:10.​4161/​onci.​28694.CrossRef
9.
go back to reference Kuroki M, Shirasu N. Novel treatment strategies for cancer and their tumor-targeting approaches using antibodies against tumor-associated antigens. Anticancer Res. 2014; 34(8):4481–8.PubMed Kuroki M, Shirasu N. Novel treatment strategies for cancer and their tumor-targeting approaches using antibodies against tumor-associated antigens. Anticancer Res. 2014; 34(8):4481–8.PubMed
11.
go back to reference Agur Z, Elishmereni M, Kheifetz Y. Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration. Wiley Interdiscip Rev Syst Biol Med. 2014; 6(3):239–53. doi:10.1002/wsbm.1263.CrossRefPubMed Agur Z, Elishmereni M, Kheifetz Y. Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration. Wiley Interdiscip Rev Syst Biol Med. 2014; 6(3):239–53. doi:10.​1002/​wsbm.​1263.CrossRefPubMed
12.
go back to reference Elias J, Dimitrio L, Clairambault J, Natalini R. The p53 protein and its molecular network: Modelling a missing link between dna damage and cell fate. Biochim Biophys Acta, Proteins Proteomics. 2014; 1844(1):232–47. doi:10.1016/j.bbapap.2013.09.019.CrossRef Elias J, Dimitrio L, Clairambault J, Natalini R. The p53 protein and its molecular network: Modelling a missing link between dna damage and cell fate. Biochim Biophys Acta, Proteins Proteomics. 2014; 1844(1):232–47. doi:10.​1016/​j.​bbapap.​2013.​09.​019.CrossRef
15.
go back to reference Summers W. Dynamics of tumor growth — a mathematical model. Growth. 1966; 30(3):333.PubMed Summers W. Dynamics of tumor growth — a mathematical model. Growth. 1966; 30(3):333.PubMed
16.
go back to reference Dethlefsen LA, Prewitt JMS, Mendelsohn ML. Analysis of tumor growth curves. J Nat Cancer Inst. 1968; 40(2):389–405.PubMed Dethlefsen LA, Prewitt JMS, Mendelsohn ML. Analysis of tumor growth curves. J Nat Cancer Inst. 1968; 40(2):389–405.PubMed
17.
go back to reference Brodin NP, Vogelius IR, Bjork-Eriksson T, af Rosenschold PM, Maraldo MV, Aznar MC, Specht L, Bentzen SM. Optimizing the radiation therapy dose prescription for pediatric medulloblastoma: Minimizing the life years lost attributable to failure to control the disease and late complication risk. Acta Oncologica. 2014; 53(4):462–70. doi:10.3109/0284186X.2013.858824.CrossRefPubMed Brodin NP, Vogelius IR, Bjork-Eriksson T, af Rosenschold PM, Maraldo MV, Aznar MC, Specht L, Bentzen SM. Optimizing the radiation therapy dose prescription for pediatric medulloblastoma: Minimizing the life years lost attributable to failure to control the disease and late complication risk. Acta Oncologica. 2014; 53(4):462–70. doi:10.​3109/​0284186X.​2013.​858824.CrossRefPubMed
23.
go back to reference Sakode CM, Padhi R, Kapoor S, Rallabandi VPS, Roy PK. Multimodal therapy for complete regression of malignant melanoma using constrained nonlinear optimal dynamic inversion. Biomed Signal Process Control. 2014; 13:198–211. doi:10.1016/j.bspc.2014.04.010.CrossRef Sakode CM, Padhi R, Kapoor S, Rallabandi VPS, Roy PK. Multimodal therapy for complete regression of malignant melanoma using constrained nonlinear optimal dynamic inversion. Biomed Signal Process Control. 2014; 13:198–211. doi:10.​1016/​j.​bspc.​2014.​04.​010.CrossRef
25.
30.
go back to reference Vaidya VG, Alexandro FJ. Evaluation of some mathematical models for tumor growth. Int J Bio-Med Comput. 1982; 13(1):19–35.CrossRef Vaidya VG, Alexandro FJ. Evaluation of some mathematical models for tumor growth. Int J Bio-Med Comput. 1982; 13(1):19–35.CrossRef
32.
33.
go back to reference Hartung N, Mollard S, Barbolosi D, Benabdallah A, Chapuisat G, Henry G, Giacometti S, Iliadis A, Ciccolini J, Faivre C, Hubert F. Mathematical modeling of tumor growth and metastatic spreading: Validation in tumor-bearing mice. Cancer Res. 2014; 74(22):6397–407. doi:10.1158/0008-5472.CAN-14-0721.CrossRefPubMed Hartung N, Mollard S, Barbolosi D, Benabdallah A, Chapuisat G, Henry G, Giacometti S, Iliadis A, Ciccolini J, Faivre C, Hubert F. Mathematical modeling of tumor growth and metastatic spreading: Validation in tumor-bearing mice. Cancer Res. 2014; 74(22):6397–407. doi:10.​1158/​0008-5472.​CAN-14-0721.CrossRefPubMed
34.
go back to reference Collins VP, Loeffler RK, Tivey H. Observations on growth rates of human tumors. Am J Roentgenol Radium Ther Nuc Med. 1956; 78(5):988–1000. Collins VP, Loeffler RK, Tivey H. Observations on growth rates of human tumors. Am J Roentgenol Radium Ther Nuc Med. 1956; 78(5):988–1000.
35.
go back to reference Mendelsohn ML. Cell proliferation and tumor growth. In: Lamberton LF, Fry RJM, editors. Cell Proliferation. Oxford: Blackwell Scientific Publications: 1963. p. 190–210. Mendelsohn ML. Cell proliferation and tumor growth. In: Lamberton LF, Fry RJM, editors. Cell Proliferation. Oxford: Blackwell Scientific Publications: 1963. p. 190–210.
36.
go back to reference Verhulst PF. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique. 1838; 10:113–21. Verhulst PF. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique. 1838; 10:113–21.
37.
go back to reference Patt HM, Blackford ME. Quantitative studies of the growth response of the Krebs ascites tumor. Cancer Res. 1954; 14(5):391–6.PubMed Patt HM, Blackford ME. Quantitative studies of the growth response of the Krebs ascites tumor. Cancer Res. 1954; 14(5):391–6.PubMed
39.
go back to reference Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new method of determining the value of life contingencies. Phil Trans Roy Soc. 1825; 27:513–85.CrossRef Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new method of determining the value of life contingencies. Phil Trans Roy Soc. 1825; 27:513–85.CrossRef
41.
go back to reference Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Cambridge, MA: Perseus Books; 1994. Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Cambridge, MA: Perseus Books; 1994.
42.
go back to reference Mehrara E, Forssell-Aronsson E, Johanson V, Kö6lby L, Hultborn R, Bernhardt P. A new method to estimate parameters of the growth model for metastatic tumours. Theor Biol Med Modell. 2013; 10:31–43. doi10.1186/1742-4682-10-31. Mehrara E, Forssell-Aronsson E, Johanson V, Kö6lby L, Hultborn R, Bernhardt P. A new method to estimate parameters of the growth model for metastatic tumours. Theor Biol Med Modell. 2013; 10:31–43. doi10.​1186/​1742-4682-10-31.
43.
go back to reference Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S, Raab V, Sabatino M, Monaco A, Liu H, Monsurró V, Buller RM, Stroncek DF, Wang E, Szalay AA, Marincola FM. Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics. 2009; 10:301. doi:10.1186/1471-2164-10-301.PubMedCentralCrossRefPubMed Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S, Raab V, Sabatino M, Monaco A, Liu H, Monsurró V, Buller RM, Stroncek DF, Wang E, Szalay AA, Marincola FM. Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics. 2009; 10:301. doi:10.​1186/​1471-2164-10-301.PubMedCentralCrossRefPubMed
44.
go back to reference Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd. New York, USA: Springer; 2002. Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd. New York, USA: Springer; 2002.
46.
go back to reference Brenner MW, Holsti LR, Perttala Y. The study by graphical analysis of the growth of human tumours and metastases of the lung. Brit J Cancer. 1967; 21(1):1–13.PubMedCentralCrossRefPubMed Brenner MW, Holsti LR, Perttala Y. The study by graphical analysis of the growth of human tumours and metastases of the lung. Brit J Cancer. 1967; 21(1):1–13.PubMedCentralCrossRefPubMed
47.
go back to reference Marcu LG, Harriss-Phillips WM. In silico modelling of treatment-induced tumour cell kill: Developments and advances. Comp Math Meth Med. 2012; 2012:960256. doi:10.1155/2012/960256. Marcu LG, Harriss-Phillips WM. In silico modelling of treatment-induced tumour cell kill: Developments and advances. Comp Math Meth Med. 2012; 2012:960256. doi:10.​1155/​2012/​960256.
50.
53.
go back to reference Kolobov AV, Kuznetsov MB. Investigation of the influence of angiogenesis on tumor growth with the use of a mathematical model. Biofizika. 2015; 60(3):555–63.PubMed Kolobov AV, Kuznetsov MB. Investigation of the influence of angiogenesis on tumor growth with the use of a mathematical model. Biofizika. 2015; 60(3):555–63.PubMed
55.
go back to reference Emerick KS, Leavitt ER, Michaelson JS, Diephuis B, Clark JR, Deschler DG. Initial clinical findings of a mathematical model to predict survival of head and neck cancer. Otolaryngol Head Neck Surg. 2013; 149(4):572–8. doi:10.1177/0194599813495178.CrossRefPubMed Emerick KS, Leavitt ER, Michaelson JS, Diephuis B, Clark JR, Deschler DG. Initial clinical findings of a mathematical model to predict survival of head and neck cancer. Otolaryngol Head Neck Surg. 2013; 149(4):572–8. doi:10.​1177/​0194599813495178​.CrossRefPubMed
56.
Metadata
Title
Differences in predictions of ODE models of tumor growth: a cautionary example
Authors
Hope Murphy
Hana Jaafari
Hana M. Dobrovolny
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2164-x

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine