Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Chronic Myeloid Leukemia | Research article

FAM168A participates in the development of chronic myeloid leukemia via BCR-ABL1/AKT1/NFκB pathway

Authors: Xiaorong Liu, Huirong Mai, Hanfang Jiang, Zhihao Xing, Dong Peng, Yuan Kong, Chunqing Zhu, Yunsheng Chen

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Although the prognosis of chronic myeloid leukemia (CML) has dramatically improved, the pathogenesis of CML remains elusive. Studies have shown that sustained phosphorylation of AKT1 plays a crucial role in the proliferation of CML cells. Evidence indicates that in tongue cancer cells, FAM168A, also known as tongue cancer resistance-associated protein (TCRP1), can directly bind to AKT1 and regulate AKT1/NFκB signaling pathways. This study aimed to investigate the role of FAM168A in regulation of AKT1/NFκB signaling pathway and cell cycle in CML.

Methods

FAM168A interference was performed, and the expression and phosphorylation of FAM168A downstream proteins were measured in K562 CML cell line. The possible roles of FAM168A in the proliferation of CML cells were investigated using in vitro cell culture, in vivo animal models and clinical specimens.

Results

We found that the expression of FAM168A significantly increased in the peripheral blood mononuclear cells of CML patients, compared with normal healthy controls. FAM168A interference did not change AKT1 protein expression, but significantly decreased AKT1 phosphorylation, significantly increased IκB-α protein level, and significantly reduced nuclear NFκB protein level. Moreover, there was a significant increase of G2/M phase cells and Cyclin B1 level. Immunoprecipitation results showed that FAM168A interacts with breakpoint cluster region (BCR) -Abelson murine leukemia (ABL1) fusion protein and AKT1, respectively. Animal experiments confirmed that FAM168A interference prolonged the survival and reduced the tumor formation in mice inoculated with K562 cells. The results of clinical specimens showed that FAM168A expression and AKT1 phosphorylation were significantly elevated in CML patients.

Conclusion

This study demonstrates that FAM168A may act as a linker protein that binds to BCR-ABL1 and AKT1, which further mediates the downstream signaling pathways in CML. Our findings demonstrate that FAM168A may be involved in the regulation of AKT1/NFκB signaling pathway and cell cycle in CML.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pemmaraju N, Cortes J. Chronic myeloid leukemia in adolescents and young adults: patient characteristics, outcomes and review of the literature. Acta Haematol. 2014;132(3–4):298–306.CrossRef Pemmaraju N, Cortes J. Chronic myeloid leukemia in adolescents and young adults: patient characteristics, outcomes and review of the literature. Acta Haematol. 2014;132(3–4):298–306.CrossRef
2.
3.
go back to reference Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93(3):442–59.CrossRef Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93(3):442–59.CrossRef
4.
go back to reference Cilloni D, Saglio G. CML: a model for targeted therapy. Best Pract Res Clin Haematol. 2009;22(3):285–94.CrossRef Cilloni D, Saglio G. CML: a model for targeted therapy. Best Pract Res Clin Haematol. 2009;22(3):285–94.CrossRef
5.
go back to reference Mauro MJ, Davis C, Zyczynski T, Khoury HJ. The role of observational studies in optimizing the clinical management of chronic myeloid leukemia. Ther Adv Hematol. 2015;6(1):3–14.CrossRef Mauro MJ, Davis C, Zyczynski T, Khoury HJ. The role of observational studies in optimizing the clinical management of chronic myeloid leukemia. Ther Adv Hematol. 2015;6(1):3–14.CrossRef
6.
go back to reference Barrett D, Brown VI, Grupp SA, Teachey DT. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs. 2012;14(5):299–316.PubMedPubMedCentral Barrett D, Brown VI, Grupp SA, Teachey DT. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs. 2012;14(5):299–316.PubMedPubMedCentral
7.
go back to reference Gu Y, Fan S, Xiong Y, Peng B, Zheng G, Yu Y, Ouyang Y, He Z. Cloning and functional characterization of TCRP1, a novel gene mediating resistance to cisplatin in an oral squamous cell carcinoma cell line. FEBS Lett. 2011;585(6):881–7.CrossRef Gu Y, Fan S, Xiong Y, Peng B, Zheng G, Yu Y, Ouyang Y, He Z. Cloning and functional characterization of TCRP1, a novel gene mediating resistance to cisplatin in an oral squamous cell carcinoma cell line. FEBS Lett. 2011;585(6):881–7.CrossRef
8.
go back to reference Liu X, Wang C, Gu Y, Zhang Z, Zheng G, He Z. TCRP1 contributes to cisplatin resistance by preventing pol beta degradation in lung cancer cells. Mol Cell Biochem. 2015;398(1–2):175–83.CrossRef Liu X, Wang C, Gu Y, Zhang Z, Zheng G, He Z. TCRP1 contributes to cisplatin resistance by preventing pol beta degradation in lung cancer cells. Mol Cell Biochem. 2015;398(1–2):175–83.CrossRef
9.
go back to reference Peng B, Gu Y, Xiong Y, Zheng G, He Z. Microarray-assisted pathway analysis identifies MT1X & NFkappaB as mediators of TCRP1-associated resistance to cisplatin in oral squamous cell carcinoma. PLoS One. 2012;7(12):e51413.CrossRef Peng B, Gu Y, Xiong Y, Zheng G, He Z. Microarray-assisted pathway analysis identifies MT1X & NFkappaB as mediators of TCRP1-associated resistance to cisplatin in oral squamous cell carcinoma. PLoS One. 2012;7(12):e51413.CrossRef
10.
go back to reference Peng B, Yi S, Gu Y, Zheng G, He Z. Purification and biochemical characterization of a novel protein-tongue cancer chemotherapy resistance-associated protein1 (TCRP1). Protein Expr Purif. 2012;82(2):360–7.CrossRef Peng B, Yi S, Gu Y, Zheng G, He Z. Purification and biochemical characterization of a novel protein-tongue cancer chemotherapy resistance-associated protein1 (TCRP1). Protein Expr Purif. 2012;82(2):360–7.CrossRef
11.
go back to reference Gu Y, Fan S, Liu B, Zheng G, Yu Y, Ouyang Y, He Z. TCRP1 promotes radioresistance of oral squamous cell carcinoma cells via Akt signal pathway. Mol Cell Biochem. 2011;357(1–2):107–13.CrossRef Gu Y, Fan S, Liu B, Zheng G, Yu Y, Ouyang Y, He Z. TCRP1 promotes radioresistance of oral squamous cell carcinoma cells via Akt signal pathway. Mol Cell Biochem. 2011;357(1–2):107–13.CrossRef
12.
go back to reference Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003;31(13):3635–41.CrossRef Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003;31(13):3635–41.CrossRef
13.
go back to reference Guo X, Pan L, Hou LF, Wang YJ, Guo HM, Yang L, Wang ZW, Sun Y, Li DL. Regulative effects of ERK and P38 signal transduction pathway on cell cycle in chronic myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2007;15(2):242–7.PubMed Guo X, Pan L, Hou LF, Wang YJ, Guo HM, Yang L, Wang ZW, Sun Y, Li DL. Regulative effects of ERK and P38 signal transduction pathway on cell cycle in chronic myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2007;15(2):242–7.PubMed
14.
go back to reference Li L, Zhou ZY, Xie W. Expression and functions of the STAT3-SCLIP pathway in chronic myeloid leukemia cells. Exp Ther Med. 2016;12(5):3381–6.CrossRef Li L, Zhou ZY, Xie W. Expression and functions of the STAT3-SCLIP pathway in chronic myeloid leukemia cells. Exp Ther Med. 2016;12(5):3381–6.CrossRef
15.
go back to reference Brown JS, Banerji U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol Ther. 2017;172:101–15.CrossRef Brown JS, Banerji U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol Ther. 2017;172:101–15.CrossRef
16.
go back to reference Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.CrossRef Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.CrossRef
18.
go back to reference Li Q, Wu Y, Fang S, Wang L, Qi H, Zhang Y, Zhang J, Li W. BCR/ABL oncogene-induced PI3K signaling pathway leads to chronic myeloid leukemia pathogenesis by impairing immuno-modulatory function of hemangioblasts. Cancer Gene Ther. 2015;22(5):227–37.CrossRef Li Q, Wu Y, Fang S, Wang L, Qi H, Zhang Y, Zhang J, Li W. BCR/ABL oncogene-induced PI3K signaling pathway leads to chronic myeloid leukemia pathogenesis by impairing immuno-modulatory function of hemangioblasts. Cancer Gene Ther. 2015;22(5):227–37.CrossRef
19.
go back to reference Zhang X, Dong W, Zhou H, Li H, Wang N, Miao X, Jia L. alpha-2,8-Sialyltransferase is involved in the development of multidrug resistance via PI3K/Akt pathway in human chronic myeloid leukemia. IUBMB Life. 2015;67(2):77–87.CrossRef Zhang X, Dong W, Zhou H, Li H, Wang N, Miao X, Jia L. alpha-2,8-Sialyltransferase is involved in the development of multidrug resistance via PI3K/Akt pathway in human chronic myeloid leukemia. IUBMB Life. 2015;67(2):77–87.CrossRef
20.
go back to reference Kang ZJ, Liu YF, Xu LZ, Long ZJ, Huang D, Yang Y, Liu B, Feng JX, Pan YJ, Yan JS, et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35:48.CrossRef Kang ZJ, Liu YF, Xu LZ, Long ZJ, Huang D, Yang Y, Liu B, Feng JX, Pan YJ, Yan JS, et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35:48.CrossRef
21.
go back to reference Jia X, Zhang Z, Luo K, Zheng G, Lu M, Song Y, Liu H, Qiu H, He Z. TCRP1 transcriptionally regulated by c-Myc confers cancer chemoresistance in tongue and lung cancer. Sci Rep. 2017;7(1):3744.CrossRef Jia X, Zhang Z, Luo K, Zheng G, Lu M, Song Y, Liu H, Qiu H, He Z. TCRP1 transcriptionally regulated by c-Myc confers cancer chemoresistance in tongue and lung cancer. Sci Rep. 2017;7(1):3744.CrossRef
Metadata
Title
FAM168A participates in the development of chronic myeloid leukemia via BCR-ABL1/AKT1/NFκB pathway
Authors
Xiaorong Liu
Huirong Mai
Hanfang Jiang
Zhihao Xing
Dong Peng
Yuan Kong
Chunqing Zhu
Yunsheng Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5898-4

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine