Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Breast Cancer | Research article

Polygenic prediction of breast cancer: comparison of genetic predictors and implications for risk stratification

Authors: Kristi Läll, Maarja Lepamets, Marili Palover, Tõnu Esko, Andres Metspalu, Neeme Tõnisson, Peeter Padrik, Reedik Mägi, Krista Fischer

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Published genetic risk scores for breast cancer (BC) so far have been based on a relatively small number of markers and are not necessarily using the full potential of large-scale Genome-Wide Association Studies. This study aimed to identify an efficient polygenic predictor for BC based on best available evidence and to assess its potential for personalized risk prediction and screening strategies.

Methods

Four different genetic risk scores (two already published and two newly developed) and their combinations (metaGRS) were compared in the subsets of two population-based biobank cohorts: the UK Biobank (UKBB, 3157 BC cases, 43,827 controls) and Estonian Biobank (EstBB, 317 prevalent and 308 incident BC cases in 32,557 women). In addition, correlations between different genetic risk scores and their associations with BC risk factors were studied in both cohorts.

Results

The metaGRS that combines two genetic risk scores (metaGRS2 - based on 75 and 898 Single Nucleotide Polymorphisms, respectively) had the strongest association with prevalent BC status in both cohorts. One standard deviation difference in the metaGRS2 corresponded to an Odds Ratio = 1.6 (95% CI 1.54 to 1.66, p = 9.7*10− 135) in the UK Biobank and accounting for family history marginally attenuated the effect (Odds Ratio = 1.58, 95% CI 1.53 to 1.64, p = 7.8*10− 129). In the EstBB cohort, the hazard ratio of incident BC for the women in the top 5% of the metaGRS2 compared to women in the lowest 50% was 4.2 (95% CI 2.8 to 6.2, p = 8.1*10− 13). The different GRSs were only moderately correlated with each other and were associated with different known predictors of BC. The classification of genetic risk for the same individual varied considerably depending on the chosen GRS.

Conclusions

We have shown that metaGRS2, that combined on the effects of more than 900 SNPs, provided best predictive ability for breast cancer in two different population-based cohorts. The strength of the effect of metaGRS2 indicates that the GRS could potentially be used to develop more efficient strategies for breast cancer screening for genotyped women.
Appendix
Available only for authorised users
Literature
21.
go back to reference Inouye M, Abraham G, Nelson CP, et al. Genomic risk prediction of coronary artery disease in nearly 500,000 adults: implications for early screening and primary prevention. bioRxiv. January 2018:250712. doi:https://doi.org/10.1101/250712. Inouye M, Abraham G, Nelson CP, et al. Genomic risk prediction of coronary artery disease in nearly 500,000 adults: implications for early screening and primary prevention. bioRxiv. January 2018:250712. doi:https://​doi.​org/​10.​1101/​250712.
Metadata
Title
Polygenic prediction of breast cancer: comparison of genetic predictors and implications for risk stratification
Authors
Kristi Läll
Maarja Lepamets
Marili Palover
Tõnu Esko
Andres Metspalu
Neeme Tõnisson
Peeter Padrik
Reedik Mägi
Krista Fischer
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5783-1

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine